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Abstract

A significant obstacle to achieving autonomous driving
(AD) and advanced driver-assistance systems (ADAS) func-
tionality in passenger vehicles is high-fidelity perception at
a sufficiently low cost of computation and sensors. An area
of research that aims to address this challenge takes inspi-
ration from human foveal vision by using attention-based
sensing. This work presents an end-to-end computer vision-
based Deep Q-Network (DQN) technique that intelligently
selects a priority region of an image to place greater atten-
tion to achieve better perception performance. This method
is evaluated on the Berkeley Deep Drive (BDD) dataset. Re-
sults demonstrate that a substantial improvement in percep-
tion performance can be attained — compared to a baseline
method — at a minimal cost in terms of time and processing.

1. Introduction

As AD/ADAS features continue to advance, vehicles are
being equipped with an increasing number of sensors and
the demand for high-definition (HD) sensing is likewise ris-
ing [6]. However, due to limited computing resources, this
demand for HD sensing is often unworkable for real-time
systems [16]. Image-based object detection has a time com-
plexity of O(NN). Therefore, this results in a tradeoff being
negotiated between perception performance and processing
time/power. While there is currently a large emphasis on
developing more powerful embedded computing platforms
for AVs, an alternative approach of addressing this difficulty
is to develop more intelligent methods of processing sensor
data.

A common technique is to mimic human foveal vision by
only processing select parts of the scene in HD when and
where it is needed, rather than continually processing the
entire scene [10, 1]. The most common method of multi-

resolution sensing employed in the automotive industry is
to use two front-facing cameras in tandem — one wide field-
of-view (FOV) low-resolution camera for close-range ob-
ject detection and one narrow FOV high-resolution camera
for long-range object detection. A less expensive attention
tactic is to use one camera but process the full camera frame
at a downscaled resolution and process a small center crop
of the frame at a higher resolution. This approach demands
a smaller pixel budget while allowing for HD detections in
the center of the frame to be obtained. However, these ap-
proaches have disadvantages in that they do not ensure that
the HD imagery is being taken from the most relevant re-
gion of the image (e.g., when on curved roads, hills, inter-
sections, etc.).

More sophisticated attention techniques typically fall
into two categories: bottom-up and top-down attention
models. A bottom-up attention model uses features or char-
acteristics from the scene to derive its attention. A classic
illustration of bottom-up attention involves a human sub-
ject having their attention drawn to a single horizontal bar
in a scene filled with vertical bars [25]. Top-down attention
models, on the other hand, are based on prior knowledge
and are based on goals, expectations, and/or rewards. A
well-known example of top-down attention involves human
subjects watching a scene of a family when an unexpected
visitor enters into a room. Before watching the scene, the
subjects are given different tasks such as predicting the ma-
terial circumstances of the family, estimating the ages of
the people, and freely examining the scene. Based on their
given tasks, the human subjects demonstrate considerably
different eye movements [30].

Quickly and automatically detecting relevant areas of a
scene through bottom-up attention models is an appealing
capability for machine vision [19]. Numerous studies in
recent years have used bottom-up attention models for the
tasks of object segmentation, object recognition, image cap-
tioning, and visual question answering [8, 29, 24, 7]. These
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Figure 1. Workflow of the proposed attention-based sensing scheme.

methods typically use convolutional neural networks and/or
recurrent neural networks to identify the attention region —
which is not favorable for safety-critical systems with real-
time constraints due to additional computing needs. An-
other common bottom-up approach is to identify salient re-
gions in the image [9, 2, | 1]. However, for the application
of autonomous driving, salient regions are not necessarily
the most relevant regions of the scene. Salient regions often
identify the most conspicuous objects in the scene, however
these objects do not require HD sensing as they could also
be detected with low resolution sensing. Rather, relevant re-
gions in a roadway scene can include small distant objects
such as an upcoming traffic light or pedestrians crossing at
an upcoming crosswalk.

Although the majority of attention models use a bottom-
up approach, it is widely accepted that top-down factors
play a key role in attention guidance [12]. A recurrent at-
tention model (RAM) and deep recurrent attention model
(DRAM) were proposed to mimic human attention and have
demonstrated promising results for the tasks of image clas-
sification and digit recognition [20, 3]. Additional saliency-
based techniques have also taken a top-down approach to
deriving attention and predicting human gaze [13, 14, 28].
Finally, spatial transformers have been used as an attention
mechanism for digit classification tasks due to their advan-
tage of being fully differentiable [15, 18].

Taking inspiration from recent advances in computer
vision-based reinforcement learning (RL), in particular,
Deep Q-Network (DQN) [17], as well as aspects from both
bottom-up and top-down attention models, we present a
lightweight DQN agent that intelligently selects the most
relevant region of the image to give more attention and
demonstrate its benefit on the task of object detection on
roadway scenes. This approach is a hybrid between bottom-
up and top-down attention because it uses low-level visual
features as its input, but is trained to achieve a high-level
goal through the DQN agent’s reward function. This DQN
agent emulates human foveal vision by using low-resolution
for peripheries but high-resolution for critical areas, and
therefore reduces the overall number of pixels to process.

This approach offers a more optimized technique to address
the tradeoff between efficiency and effectiveness. Finally,
this method is self-contained, derived only from perception,
and therefore can be easily integrated into any existing per-
ception system.

2. Methodology

This work aims to develop an intelligent attention-
subsampling technique in which the required compute re-
sources are significantly reduced while the perception per-
formance is retained. Figure 1 shows the workflow for the
proposed technique in which human foveal vision is emu-
lated as a bi-directional process. In this workflow, an HD
image is captured from the camera stream and passed on to
the attention-based subsampling mechanism. The subsam-
pling mechanism first downscales the full camera frame to a
standard-definition (SD) resolution and then passes it along
to the DQN-based attention module. This module then iden-
tifies the most relevant region of the image and passes that
back to the attention-based subsampling module in the form
of an attention signal. Based on the attention signal, the sub-
sampling mechanism crops out an attention window from
the original HD frame and passes that on to the perception
module. Finally, object detection is performed on both the
SD full-frame and the HD attention window, and the result-
ing mixed-resolution detections are fused to yield the final
objects.

2.1. DQN-Based Attention Agent

The first step to developing the DQN-based attention
agent is establishing its action space. The action, A}, of
the attention agent is simply the selected location of the at-
tention window’s centroid (i.e.,  and y locations in image
coordinates). To simplify the action space, we discretize the
image into N, x N, blocks. Then, a Ry, x Ry, attention
window is determined based on the given action, A;. Fig-
ure 2 depicts the discretized image and the attention agent’s
action space.

The attention/perception module shown in Figure |
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Figure 2. Depiction of the discretized image, attention region
(blue), centroid of attention region (orange), and action space
(red). The action space does not encompass the entire image in
order to ensure the attention region never extends beyond the im-
age boundary.

is mainly comprised of a CNN-based object detection
(OD) network, as well as a lightweight deep Q-network
(DQN) [4]. Figure 3 shows a detailed view of the atten-
tion/perception module and how it fits into the overall work-
flow. Object detection is performed twice sequentially —
once for the SD frame and then once for the HD attention
frame. First, the SD full-frame is passed into the OD net-
work and its detections are then received out from the OD
head. YOLOVS, the latest version in the YOLO object de-
tector family, was used in this study [21, 22, 23, 5, 26].
Before being passed to the OD head, the resulting feature
tensor from the CNN backbone is intercepted to be used as
the input to the DQN. The output of the DQN is an array
of Q-values, which for our application, represents the an-
ticipated reward for each possible location of the attention
window, A;. The argmax of this array is then taken to ob-
tain the attention signal, A;. Finally, based on this attention
signal, an HD attention frame is cropped from the original
HD image, passed to the OD network, and HD attention
frame detections are then received and fused with the SD
full-frame detections to yield the final objects.

The architecture of the DQN consists of two branches,
both of which are fully connected neural networks com-
prised of one hidden layer. One branch is used to select the
x location of the attention window, while the other branch
is used to select the y location of the attention window. The
architecture of the DQN is depicted in Figure 4. The in-
put to the DQN is the feature tensor from the object de-
tection backbone. This feature tensor is then flattened and
passed to two distinct, fully connected networks. The first
network outputs an array with size NV,.. This output’s maxi-
mum value represents the predicted column for the attention
window’s centroid that would maximize the reward. The
second network outputs an array with size N,. The maxi-

mum value of this output represents the predicted row for
the attention window’s centroid that would maximize the
reward.

2.2. Training Process

This work uses standard techniques for training the
DQN but with a few minor adjustments. The DQN is
trained to approximate a function that can predict Q-values,
which are a measure of the agent’s expected reward, given
an action Ay, state Xy, and network parameters §. The
policy which governs the agent’s actions, my(As, X;—1),
is an epsilon greedy policy around the function A} =
argmax 4, Q(A¢) [27]. This policy is used to improve
training stability and increase the likelihood of conver-
gence.

The DQN was trained using the Berkeley Deep Drive
(BDD) dataset [31]. The images contained in the BDD
dataset are not sequential, and hence each image could be
considered independent from the next. Therefore, a replay
memory was not needed to randomly sample data in order
to ensure decorrelated batches. Also, as a result of dealing
with temporally independent data, the discount factor, -,
was set to be 0. The discount factor is a constant between
0 and 1 that determines how the agent is rewarded — i.e., a
discount factor of O will reward the agent simply based on
the instantaneous reward, while a value closer to 1 will give
more significance to expected rewards in the future. Since
our DQN essentially operates on a frame-by-frame basis,
our agent is only concerned with maximizing the reward
for the current frame, and therefore, the discount factor is
set to 0.

2.2.1 Loss Function

With a discount factor of 0, the original training rule (as
shown in Eq. 1) simplifies to Eq. 2.

Q™(X,A) =r+~+Q" (X', m(X")) (1)
QT(X,A)=r )
0=Q"(X,A) —r| 3)

In the above equations, Q7 (X, A) are the Q-values ac-
cording to policy 7, given state X and action A. The reward
is represented as 7, and the expected future state is X’. The
difference between the two sides of the equality in Eq. 2 is
the error, J, that we are trying to minimize during training
(as shown in Eq. 3). Since the DQN has two branches, one
for the attention window’s z position and the other for its
y position, the network produces two sets of Q-values for
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Figure 3. Detailed view of the attention/perception module and how it fits in the overall workflow.
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Figure 4. The network architecture of the DQN consists of two
fully connected branches — one to predict the = location of the
attention window and another to predict the y location of the at-
tention window.

each batch during training. Therefore, we get two error val-
ues, &, and d,. Using an L1 loss function, we show the final
training loss in Eq. 4, where B is the batch size.

B
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2.2.2 Reward Function

A simple reward function was implemented to train the
DQN agent. This reward function compared the number of
true positive detections before applying the attention win-
dow, T'P, to the number of true positive detections after ap-
plying the attention window, T'P’. If applying the attention
window resulted in more true positive detections, then the
reward was +1. If applying the attention window resulted in
the same amount of true positive detections, then the reward

was 0. Finally, if applying the attention window resulted in
less true positive detections, then the reward was -1. This
reward function is summarized in Eq. 5.

-1 TP -TP<0
r=< 0 TP —-TP=0 (5)
1 TP —TP >0

For this study, the reward function was designed in a way
to simply maximize true positive detections of any object.
As will be shown in section 3 of this paper, the DQN agent
learned to seek out small, distant vehicles using its atten-
tion window. This is due to vehicles being the dominant
class in the BDD dataset. However, a more sophisticated
reward function can easily be tailored in order to give more
significance to other classes that may be of more interest.
Furthermore, additional post-processing techniques could
be implemented to give more significance to other regions
based on other sources of information, such as a map, path
planning, etc.

3. Results
3.1. Experimental Setup

The DQN-based attention mechanism was tested on both
sequential and non-sequential data. For non-sequential
data, only one camera frame could be used throughout the
attention workflow. In other words, the attention window
is applied to the same camera frame that provided the input
feature tensor to its DQN. However, for sequential data, this
process spans two frames so that the camera frame at time
t is used to generate the attention window that is applied to
the camera frame at time ¢ + 1.

The experimental setup consists of comparing the per-
formance of YOLOVS at four different image resolutions.
The first resolution is the original HD image resolution of
0.92 MP. Second, a downscaled SD image resolution of 0.25
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Figure 5. Summary of the experimental setup.

MP is used as the baseline. The third resolution is a fur-
ther downscaled resolution of 0.11 MP. Finally, a 0.11 MP
HD attention crop of the original image, referred to as the
region of interest (ROI), is combined with the previously
mentioned 0.11 MP downscaled frame to yield a 0.22 MP
attention frame. A summary of this experimental setup is
depicted in Figure 5.

3.2. Evaluation

Average precision (AP) was used as the performance
metric for this study. Inference time was also used as a
secondary performance metric. In addition to the DQN-
based attention model, two additional attention models were
used for comparison. First, a centered attention model was
tested, which always placed the attention window in the
middle of the camera frame. Second, a random attention
model was tested, which randomly placed the attention win-
dow within the camera frame. Four classes were used dur-
ing the evaluation — vehicle, traffic light, pedestrian, and bi-
cycle. Finally, a weighted mean average precision (WMAP)
was used to calculate the average precision over all classes,
according to their prevalence in the dataset. Figures 6-10
show the wMAP and AP for various classes as a function
of intersection over union (IOU). The inference time of the
various methods is shown in Figure 11.
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Figure 6. Weighted mean average precision as a function of IOU
for the BDD dataset.

4. Discussion
4.1. Impact on Inference Time

The results in the previous section demonstrate that the
proposed attention mechanism can provide a considerable
performance boost in terms of average precision while only
requiring a small increase in processing time, as shown in
Figure 11. Although the total amount of pixels being pro-
cessed for the attention method is fewer than for the base-
line method (0.22 MP vs. 0.25 MP), the attention method
requires YOLOVS to be run twice to provide the detections
for the low-resolution frame, as well as the region of in-
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Figure 7. Average precision for vehicles as a function of IOU for
the BDD dataset.
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Figure 8. Average precision for traffic lights as a function of IOU
for the BDD dataset.
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Figure 9. Average precision for pedestrians as a function of IOU
for the BDD dataset.

terest (ROI) frame. Therefore, the extra overhead involved
with running the object detection network twice results in
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Figure 10. Average precision for bicycles as a function of IOU for
the BDD dataset.
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Figure 11. Inference time of YOLOVS object detector at various
resolution levels.

a slightly higher inference time; however, it is still much
faster (less than half the required processing time) than the
full resolution (HD) method. To further reduce processing
time, a more sophisticated CNN architecture could be de-
veloped to process both frames simultaneously.

4.2. Impact on Detection Accuracy

As shown in Figure 7, the attention method provides a
considerable improvement in performance over the base-
line method for the vehicle class. The difference between
the baseline results and the full resolution (HD) results —
which represent the upper bound that can be achieved with
the given data and object detection network — is nearly cut
in half when the attention mechanism is used. However,
the performance boost that the attention mechanism pro-
vides for wMAP is not as considerable. This is due to the
lower performance of the attention method for the traffic
light class — which performed comparably to the baseline
method — and the pedestrian and bicycle classes — which
both performed worse than the baseline method. Although
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Figure 12. Illustration of evaluation results using BDD data. Notice the two distant pedestrians crossing the street, as well as the bus and
parked cars along the side of the street, that were detected in the attention window, but not in the baseline view.

the vehicle class is the dominant class in the BDD dataset,
the weaker performance seen in the other three classes is
the reason for the less considerable performance boost seen
overall in Figure 6.

The attention mechanism provided improved perfor-
mance for vehicles because the DQN agent learned to place
the attention window in locations that were likely to con-
tain small, distant vehicles (i.e., near the center of the image
along the horizon line). While traffic lights often appear in
this region of the image, they also frequently appear above
the horizon line, as well as along the left/right side of the
frame when approaching intersections. Therefore, a signif-
icant performance boost is not seen for traffic lights. Simi-
larly, bicycles and pedestrians do not often appear nearby
small and distant vehicles but rather are often found on
the left/right side of the frame on sidewalks. Therefore,
the attention method produces diminished results for these
classes. However, due to the dominance of vehicles in the
BDD dataset, the overall performance (WMAP) of the at-
tention method still outperforms the baseline despite using
fewer pixels overall.

As mentioned previously in section 2.2.2, the proposed
methodology is highly flexible and can be modified to ac-
count for different objectives. While the DQN trained for
this study simply attempted to maximize true positive de-

tections, the reward function can be crafted to give more
significance to other classes. Furthermore, other sources
of information, such as map and path planning data, can
be incorporated to allow for dynamic objectives. For ex-
ample, if the AV’s on-board map indicates that the vehicle
is approaching a traffic light, then it can employ a DQN
agent trained specifically to detect traffic lights. However,
if the map indicates that the vehicle is approaching a cross-
walk, then the AV can employ a different DQN agent trained
specifically to detect pedestrians in the AV’s intended path.
Incorporating dynamic objectives such as these allows the
most appropriate region of interest to be identified accord-
ing to the most relevant task for the AV at the moment.

As shown in Figures 6-10, the DQN-based atten-
tion scheme (dark blue) outperformed the other attention
schemes. Centered attention (green) also performed favor-
ably, considering that small, distant vehicles are often found
near the center of the frame. However, it still did not per-
form as well as the DQN-based attention scheme, therefore,
indicating that the DQN agent is, in fact, able to intelligently
seek out additional objects. Random attention (light blue),
on the other hand, did not perform favorably. It only slightly
outperformed the low-resolution detections because, while
it does provide additional resolution, there is no intelligence
behind the placement of the attention window, and so the
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additional resolution often goes to waste.

4.3. Illustrative Example

An illustration of the detections received for the various
methods is shown in Figure 12. In this figure, the HD 0.92
MP frame is shown in the bottom right quadrant, along with
its detections (red for vehicles, blue for pedestrians). The
baseline SD 0.25 MP frame is shown in the bottom left
quadrant, along with its detections. The upper right quad-
rant shows the 0.11 MP region of interest (ROI) and its de-
tections. Finally, the upper left quadrant shows the location
of the attention window (white rectangle), along with the
fused attention detections, which come from the 0.11 MP
ROI window (top right) and the 0.11 MP low-resolution
full-frame (not shown). This snapshot demonstrates how
the attention mechanism provides many more small, distant
detections compared to the baseline.

While the attention window gives higher detection ac-
curacy within the region of interest, detection performance
outside of the region of interest is diminished. This is ex-
pected as the proposed attention-based sensing paradigm
mimics human foveal vision by providing high-resolution
in one specific area, while the peripheral region is processed
at a lower resolution. This tradeoff is illustrated in 13, as we
see numerous vehicle and traffic light detections in the at-

tention window, but also some missed detections outside of
the region of interest along the left side of the frame. How-
ever, due to the intelligent nature in which the DQN agent
places the attention window, and its ability to fixate on the
most relevant region of the scene, the positive effects of this
tradeoff far outweigh the negative effects.

5. Conclusion

This paper presents a novel attention-based sensing tech-
nique that leverages an end-to-end DQN-based agent to in-
telligently select a region of an image to place greater at-
tention to achieve better perception performance. Due to
the flexibility of the proposed method, the DQN agent can
be crafted to maximize performance for various objectives.
This technique presents several advantages for AD/ADAS
applications, such as requiring fewer sensors, lower cost,
less processing time and power consumption, improved per-
ception capability, and enhanced HD sensors utilization.
Overall, a substantial improvement in perception capability
at a small cost in terms of processing time was demonstrated
using the Berkeley Deep Drive dataset.
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