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Abstract

Autonomous driving needs to ensure all-weather safety,
especially in unfavorable environments such as night and
rain. However, the current daytime-trained semantic seg-
mentation networks face significant performance degrada-
tion at night because of the huge domain divergence. In this
paper, we propose a novel Curriculum Domain Adaptation
method (CDAda) to realize the smooth semantic knowledge
transfer from daytime to nighttime. Specifically, it consists
of two steps: 1) inter-domain style adaptation: fine-tune
the daytime-trained model on the labeled synthetic night-
time images through the proposed frequency-based style
transformation method (replace the low-frequency compo-
nents of daytime images with those of nighttime images);
2) intra-domain gradual self-training: separate the night-
time domain into the easy split nighttime domain and hard
split nighttime domain based on the “entropy + illumina-
tion” ranking principle, then gradually adapt the model to
the two sub-domains through pseudo supervision on easy
split data and entropy minimization on hard split data.
To the best of our knowledge, we first extend the idea of
intra-domain adaptation to self-training and prove different
treatments on two parts can reduce the distribution diver-
gence in the nighttime domain itself. In particular, aimed
at the adopted unlabeled day-night image pairs, the predic-
tion of the daytime images can guide the segmentation on
the nighttime images by ensuring patch-level consistency.
Extensive experiments on Nighttime Driving, Dark Zurich,
and BDD100K-night dataset highlight the effectiveness of
our approach with the more favorable performance 50.9%,
45.0%, and 33.8% Mean IoU against existing state-of-the-
art approaches.

1. Introduction
Recent years have witnessed impressive progress in se-

mantic segmentation tasks [15, 18, 6]. However, they are
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mostly designed to operate in daytime scenes with favorable
illumination. The huge domain divergence between day-
time and nighttime induces their performance degradation
at night. This greatly restricts the application of semantic
segmentation algorithms on outdoor scenes which require
robust vision systems, such as autonomous driving.

To handle this problem, several domain adaptation works
have been proposed to adapt the daytime-trained model
to nighttime without labels in the nighttime domain. [10,
26, 29] utilize the twilight domain as the bridge to per-
form the model adaptation from daytime to nighttime.
[31, 24, 26, 29] train the image transferring network to gen-
erate the synthetic nighttime images, which can help pro-
mote the semantic transfer. The essence of the two lines
of work is to introduce the appropriate intermediate domain
to realize smooth knowledge transfer. However, all these
methods require the additional training data (twilight data)
or style transferring network to perform domain adaptation.
This is cost-consuming and cannot handle the problem of
intra-domain gap.

Therefore we propose a Curriculum Domain Adapta-
tion method (CDAda) to bridge the inter-domain and intra-
domain gap together without additional data or network.
CDAda separates the domain adaptation process into two
steps to realize the progressive from-easy-to-hard domain
adaptation, which promotes smoother knowledge transfer.
We adopt the Cityscapes dataset [8] and Dark Zurich dataset
[29] to realize the domain adaptation. The Dark Zurich
dataset contains unlabeled day-night scene image pairs that
are coarsely aligned using GPS recordings.

At the step one, inspired from [40], CDAda exploits
an improved frequency-based style transformation method.
Benefiting from good spatial prior of the used Dark Zurich
dataset, daytime images can be translated as synthetic night-
time images by replacing both low-frequency amplitude (re-
flecting what the target “style” is) and low-frequency phase
(reflecting where the target “style” is) of the daytime image
with those of the paired night image. Note that the day-
time model trained on Cityscapes generates pseudo labels
for the Dark Zurich daytime set. Fine-tuning the model with



Figure 1: Comparison between direct adaptation (the solid
arrow) and CDAda (the dotted arrow). Notation: the dot-
ted gray line represents the threshold separating the night-
time data, which will be dynamically adjusted in the self-
training.

the supervision from synthetic nighttime images bridges the
inter-domain gap.

At the step two, CDAda proposes an intra-domain grad-
ual self-training which separates the whole process into
multiple iteration rounds. In each round, we firstly sepa-
rate the nighttime data into the easy and hard split based
on the “entropy + illumination” ranking principle. Then
pseudo labels are generated for the easy split data. The
pseudo supervision from these data helps fine-tune the net-
work. As for hard split data with high entropy prediction or
too many over-exposed and under-exposed areas, there ex-
ists too much noise in the generated pseudo labels of them.
Therefore only the exposure-aware entropy minimization
is imposed on the pixel-wise prediction. While minimiz-
ing entropy, the over-exposed and under-exposed areas are
emphasized because these areas often contain seriously de-
graded visual appearances and structures which affect the
model prediction results [32]. Benefiting from different
treatments on these two parts of data, semantic knowledge
learnt from the easy split data can improve the segmenta-
tion performance on the hard split data, which promotes the
intra-domain adaptation. In the self-training, we further de-
sign a prediction-guidance loss for the used day-night scene
image pairs of Dark Zurich dataset. The pseudo labels of the
daytime images are adopted as the guidance of segmenting
the paired nighttime image. Though pixel-level consistency
cannot be realized between the paired images, patch-level
consistency can be satisfied well. Therefore, we adopt the
pyramid pooling module [43] to process the two paired in-
puts, then adopt the result of daytime pseudo labels as the
supervision of the result of nighttime model prediction to

promote the model adaptation.
Generally speaking, CDAda follows the idea of curricu-

lum learning [42]. We adapt the model from easy to hard:
daytime → synthetic nighttime → easy split nighttime→
hard split nighttime. The whole adaptation process is shown
in Fig. 1. Compared with direct adaptation, this order is
more beneficial for model adaptation to realize smoother
semantic transfer. In particular, compared with [26, 29],
CDAda does not need the additional twilight images as the
bridge of inter-domain adaptation and realize the progres-
sive model adaptation from the perspective of reducing the
inter-domain and intra-domain gap together .

Our main contributions are summarized as follows:

• We propose a two-step curriculum model adaptation
method that follows the appropriate order of model
adaptation to realize the smoother semantic knowledge
transfer. In particular, we extend the idea of intra-
domain adaptation to self-training. It is proved that dif-
ferent treatments on easy-split and hard-split data can
promote intra-domain adaptation in the self-training.

• We propose a new style transformation method and
prediction-guidance loss based on the good spatial
prior of the used day-night image pairs. The prediction
of the Dark Zurich daytime image provides the patch-
level guidance for segmenting the corresponding Dark
Zurich nighttime image. It is shown that these spe-
cially designed strategies can significantly enhance the
performance of model adaptation.

• Extensive experiments demonstrate CDAda achieves
new state-of-the-art segmentation performance on
three challenging nighttime scene segmentation
datasets, i.e., Nighttime Driving [10], Dark Zurich
[26], and BDD100K-night [41] dataset. Ablation
study has verified the active effect of each component
in CDAda.

2. Related Work
2.1. Nighttime Semantic Understanding

Nighttime is the scene that many vision algorithms must
deal with. Therefore, nighttime semantic understanding has
attracted numerous attention. Some works realize people
detection in nighttime through FIR cameras [39, 12], or vis-
ible light cameras [16], or the combination of both [5, 7].
Besides, other works study the detection on the salient ob-
jects at night, such as cars [17] and rear lights [30]. Dif-
ferent from the above domain-specific approaches, many
works try to design a model which is robust to the changes
of illumination [1, 25, 35]. As for the semantic knowledge
transfer, [10] shows the twilight images are conductive for
the semantic knowledge transfer from daytime to nighttime.



Figure 2: A general overview of the whole framework. (a) is inter-domain style adaptation (IDSA). (b) is intra-domain
gradual self-training (IDGST). FT stands for fine-tuning. Orange arrows denote the training process of our model, purple
arrows mean the generation of predictions.

[26, 29] extend this idea by learning jointly from unlabeled
real nighttime images and synthetic nighttime images. [37]
proposes a one-stage domain adaptation network for unsu-
pervised nighttime semantic segmentation through the com-
bination between the image relighting network and the se-
mantic segmentation network. Our work is inspired by the
gradual adaptation methods. What differs from the previ-
ous methods is that our CDAda needs no additional data or
network and realizes the finer division of the adaptation pro-
cess, which promotes smoother semantic knowledge trans-
fer.

2.2. Model Adaptation

Because the performance of semantic segmentation net-
works has been rapidly improved, more works [35, 3, 38]
turn to study the model adaptation to adverse conditions.
[27, 28, 9, 13] learn jointly from the labeled synthetic im-
ages and unlabeled real foggy images to adapt the clear-
weather model to fog. Nighttime is undoubtedly another
important and difficult condition required to be adapted
to. Besides, unsupervised domain adaptation based meth-
ods were widely proposed to adapt semantic segmenta-
tion models from synthetic scenes to real environments
[33, 46, 36, 34, 45, 40, 11, 22]. In [46] domain adaptation
is defined as an expectation-minimization problem by dy-
namically iterating between pseudo labeling the unlabeled
target data with class-balance curriculum and obtaining a
new model with the new generated pseudo labels. IntraDA
[22] proposes a self-supervised domain adaptation approach
to minimize distribution gap among the target data through
adversarial learning. Our work is inspired by the above two
method and first extends the idea of intra-domain adaptation

to self-training.

2.3. Curriculum Learning

Curriculum learning imitates humans to introduce a
learning process, i.e. from easy to complex, which has been
proved to promote the optimization of non-convex prob-
lems [2]. There exist three types of curriculum in semantic
segmentation domain adaptation from the perspective of or-
dering tasks, utilizing data, and selecting intermediate do-
mains. The first type [42, 20] adds easier tasks than se-
mantic segmentation in curriculum adaptation, which boost
the semantic knowledge transfer. The second type [46, 45]
interactively generates more pseudo labels for more target
data in self-training. The third type [10, 9, 27, 28] gradu-
ally transfers semantic knowledge by the transition of the
intermediate domain. Our work integrates the idea of the
last two types and emphasizes that fine separation of the
adaptation process can promote the model adaptation from
easy to hard.

3. The Design of CDAda
In this section, we first give an overview of CDAda in

Sec. 3.1. Then we explain each step of our CDAda in detail
from Sec. 3.2 to Sec. 3.3. Finally we introduce the object
function of each step in Sec. 3.4.

3.1. The Overview of Framework

CDAda involves three input datasets: a labeled daytime
dataset Dld, an unlabeled daytime dataset Dud, and an un-
labeled nighttime dataset Dun, which represent Cityscapes,
Dark Zurich-day set and Dark Zurich-night set respectively.
As shown in Fig. 2, the proposed framework consists of two



(a) Style transformation

(b) Visual results

Figure 3: (a) is the process of style transformation; (b) is the
comparison between the synthetic nighttime images gener-
ated by FDA [40] (left) and our method (right). Notation:
the dotted orange line means the replacement of the low-
frequency phase part, which is not performed for style trans-
formation on Cityscapes set.

steps: inter-domain style adaptation (IDSA), intra-domain
gradual self-training (IDGST).

3.2. IDSA

Transferring daytime images to the night style is the
common method to reduce the huge gap between the day-
time domain and nighttime domain. To control the degree of
style conversion and reduce the altering of semantic struc-
tures, we adopt the frequency-based style transformation
method, which is inspired from [40]. Specifically, we first
decompose each input image into the amplitude and phase
part through the Fast Fourier Transform (FFT), then replace
the low-frequency part of the nighttime images into the day-
time images before reconstituting the images via the inverse
FFT (iFFT) for training. The whole process is illustrated in
Fig. 3a.

Different from [40], we conduct a more thorough fre-
quency exchange in CDAda. We find that the replacement
of the low-frequency phase part of the daytime image with
that of the nighttime image can further facilitate the conver-
sion of style when two images share similar high-level se-
mantics. This is because the low-frequency phase informa-
tion reflects the position of style information, such as which

position should be over-exposed or under-exposed. Luckily
the day-night image pairs aligned with GPS recordings are
adopted for our training. Therefore the daytime image can
learn the position of style information from the paired night-
time image. We propose to replace the amplitude and phase
of the daytime image with those of the paired night image,
which further boosts the domain adaptation. Note that the
phase replacement is only performed in style transformation
on the Dark-Zurich day set. Only the amplitude replace-
ment is performed for style transformation on Cityscapes
set because of the mismatched spatial prior.

As shown in Fig. 3b, we visualize the synthetic
nighttime images produced with only replacing the low-
frequency amplitude in FDA [40] and replacing the low-
frequency amplitude and phase in our method. It is appar-
ent that the addition of replacing the low-frequency phase
makes the synthetic night image better learn the position of
exposure in the real night image. The place of the street
lamp should be over-exposed, and the place of the sky
should be under-exposed, which makes the synthetic im-
ages more real.

The frequency-based style transformation converts the
style of daytime images xld, xud from Dld, Dud to the
nighttime, and generates synthetic nighttime images sln,
sun respectively. Note that the parameter β in Fig. 3a
means how much low frequency components we replace in
daytime images. This reflects the degree of style conversion
and we will discuss the effects of different β in Section. 4.4.

3.3. IDGST

Benefiting from good model initialization from IDSA,
good pseudo labels of the Dark Zurich-night set can be gen-
erated. However, noise in pseudo labels is unavoidable. The
noise has two adverse effects: 1) imbalanced class distri-
bution: label generating process is biased to easy-to-adapt
categories ignoring other categories; 2) terrible prediction
of hard split nighttime data: there exist large regions of
some nighttime images on which recognition of the seman-
tic class of the corresponding scene content is hard, even for
an experienced human subject [9]. Therefore we take three
measures to solve these problems.

Class-balanced Pseudo Labels Generation: inspired
from [46], we adopt an offline class-balanced process of
generating pseudo labels. Specifically, we rank the confi-
dence of all pixels classified to every class on the data re-
spectively. Then we generate top-confident pseudo labels in
every class according to the same ratio α. Because the pro-
cess of self-training is dynamic, α will be improved respec-
tively in each round. In our work, we follow [46] to set 5
self-training rounds with the ratio α = 0.2, 0.4, 0.6, 0.8, 1.0
respectively.

Easy-to-hard Self Training: We propose the gradual
adaptation from easy split nighttime images to hard split



nighttime images. The hard split data can be selected
through two criteria: 1) the entropy of the model prediction;
2) the illumination estimation of the image. Those images
with high entropy prediction or too many over-exposure and
under-exposure areas can be assumed as hard split. There
exists too much noise in these images. Therefore we only
impose the exposure-aware entropy minimization on them.
Only pseudo labels from easy split data are used for self-
training. This effectively reduces the introduction of pseudo
label noise from the hard split data at the self-training. In
particular, the learned knowledge from easy split data can
improve the model prediction on the hard split data, which
reflects that different treatments on different parts realize
the semantic knowledge transfer between them. This effec-
tively realizes the intra-domain adaptation without adopt-
ing adversarial learning [22]. We gradually improve the
portion of the easy split part and reduce the portion of
the hard split part in each round of self-training. Specifi-
cally, the separation score for the unlabeled nighttime image
xun ∈ RH×W×C is defined as

Score(xun) = −
1

H ×W
∑
h,w

∑
c

ph,w,c
un,k log(p

h,w,c
un,k )+

1

H ×W
∑
h,w

|Ih,wun − 0.5|
1.0

where pun,k is the corresponding prediction map and Iun
means the normalized V channel of xun in the hsv space.
The former part represents the prediction entropy and the
latter part denotes the illumination estimation. In each
round, we calculate the separation score for each image
xun and rank them according to the corresponding score.
Only the top easy split images are selected for generat-
ing pseudo labels. To avoid the introduction of additional
hyper-parameters, the ratio of selection is also set as α.
Such the setting is reasonable. The selection of easy split
data is positively related to the selection of confident pixels.

Guidance from the Paired Daytime Image The day-
night image pairs are captured from almost identical view-
points in daytime and nighttime respectively. Therefore a
large portion of sharing contents can be utilized to guide the
adaptation process through patch-level prediction guidance.
The details will be explained in Section 3.4.

3.4. Object Function

In this subsection, we introduce all the objective func-
tions involved in the each step of domain adaptation.

IDSA At the beginning, we generate pseudo labels yud
for Dud through the trained model on Dld. Then we adopt
the synthetic nighttime images sln, sun with the corre-
sponding labels yld , yud to fine-tune the model. The train-
ing loss is defined as

LIDSA = Lc(sln, yld) + Lc(sun, yud)

Figure 4: (a) The gray arrow denotes the prediction-
guidance loss. (b) The blue arrow means the exposure-
aware entropy loss.

where Lc means the cross entropy loss.
IDGST In each round, we split xun as easy split part xeun

and hard split xhun. Then we generate the class-balanced
pseudo labels yeun for xeun. The training loss is defined as

LIDGST = Lc(sln, yld) + Lc(sun, yud) + Lc(xeun, y
e
un)+

λpL
p(yud, xun) + λeL

e(xhun)

where Lp means the patch-level prediction-guidance loss,
Le means exposure-aware entropy loss and λp, λe is two
constants balancing each loss. Next we will explain the two
loss in detail:

(a) Prediction-guidance Loss Due to the influence of
shooting angle and time, pixel-level alignment cannot be at-
tained but good spatial prior can guarantee preferable patch-
level alignment. To avoid controlling the size of the patch,
we adopt the pyramid pooling module to get the multi-scale
patch-level prediction. As for the output size of the pool-
ing layer, we follow the setting in [43] and set the output
size as 1×1, 2×2, 3×3, and 6×6 respectively. We minimize
the Kullback–Leibler (KL) divergence between the corre-
sponding output of the one-hot encoding of the daytime
pseudo label yud ∈ RH×W and the model prediction of
the paired nighttime image pun ∈ RH×W×C to realize the
patch-level consistency of prediction. As shown in Fig. 4,
the prediction-guidance loss is defined as below:

Lp(yud, xun) = KL(Fpsp(Tonehot(yud))||Fpsp(pun))

where the Fpsp means the pyramid pooling module and
Tonehot means the operation of converting mask to one-hot
encoding.

(b) Exposure-aware Entropy Loss The problem that
the details of nighttime images in over-exposed and under-
exposed areas are destroyed motivates us to make the net-
work pay more attention to the prediction of these areas. As
shown in Fig. 4, we impose entropy minimization com-
bining the corresponding weight map on hard split data,
which especially minimizes the prediction entropy of the



over-exposed and under-exposed areas. The loss is defined
as:

Le(xun)=−(1+
|Ih,wun −0.5|

1.0
)

1

H×W
∑
h,w

∑
c

ph,w,c
un,k log(p

h,w,c
un,k )

4. Experiments
In this section, we first introduce our used model and

dataset in Sec. 4.1. Then we explain our training details in
Sec. 4.2. After that we compare CDAda with other state-of-
the-art model adaptation approaches of nighttime semantic
segmentation in Sec. 4.3. Finally we illustrate the effec-
tiveness of CDAda through the ablation experiments in Sec.
4.4.

4.1. Model and Dataset

We adopt the commonly used RefineNet [21] as our
choice of architecture for experiments. The publicly avail-
able RefineNet-Res101-Cityscapes model which has been
trained on the daytime images of Cityscapes dataset is used
as the baseline model. The following datasets are used for
model training and performance evaluation:

Dark Zurich [9] The Dark Zurich dataset contains 3041
daytime, 2920 twilight, and 2416 nighttime images, which
are all unlabeled with the resolution of 1920 × 1080. Espe-
cially the images in the three domains are aligned through
GPS-based nearest neighbor assignment. These paired
images share a large portion of the content, which pro-
motes the domain adaptation between the three domains.
In our work, we choose 2416 night-day image pairs to
train our curriculum framework (without using the twi-
light images). Dark Zurich also provides 201 finely anno-
tated nighttime images which are divided into the validation
(Dark Zurich-val) and test part (Dark Zurich-test) with 50
images and 151 images respectively. Note that the evalua-
tion of Dark Zurich-test only serves as an online benchmark
whose ground truth is not publicly available. In our experi-
ments, we obtained our CDAda on Dark Zurich-test against
the annotated ground truths through submitting the predic-
tion results to the online evaluation website.

Nighttime Driving [10] The Nighttime Driving test set
provides 50 nighttime images with a resolution of 1920 ×
1080. All these 50 images are pixel-wise annotated with
the same 19 Cityscapes categories. In our experiments, we
also use Nighttime Driving test set for method evaluation.

BDD100K-Night [41] The BDD100K-Night set con-
tains 87 nighttime images with the resolution of 1280 ×
720, which are selected from BDD100k and have no obvi-
ous errors. The dataset is proposed in [29]. All the images
are pixel-wise annotated using the same 19 Cityscapes cat-
egories. We adopt BDD100K-Night to further illustrate the
model generalization.

4.2. Training Details

We implement our framework in PyTorch [23]. We train
the network adopting stochastic gradient descent (SGD)
with mini-batch size 1, momentum 0.9, and weight decay
1×10−5. In the whole process we use the constant learning
rate of 5 × 10−5. We train the model for 30,000 iterations
for IDSA, 20,000 iterations for every round of the IDGST.
Note that though our domain adaptation involves two steps,
the training process is similar to the common self-training
methods [26, 29]. Therefore our method adds little addi-
tional training complexity. In addition, the resized size is
set to 1024× 512 for the prepossessing of the training data.
For the experiments, the hyper-parameters β, λp, λe are set
to 0.01, 1, 0.0025 respectively.

4.3. Comparison with state-of-the-art methods

Comparison on Dark Zurich-test Here we will com-
pare CDAda with other state-of-the-art approaches of adapt-
ing the semantic segmentation model to nighttime, includ-
ing AdaptSeg [35], BDL [19], ADVENT [36], DMAda
[10], GCMA [26], MGCDA [29] and DANNet [37]. We
show the respective mIoU performance in Table 1. The
adaptation of AdaptSeg, BDL and ADVENT is trained from
Cityscapes to Dark Zurich-night set. Because the used base-
line model is different, we also report the performance of
the corresponding baseline Cityscapes models for the above
methods to conduct a fair comparison. RefineNet is the
baseline model of DMAda, GCMA, MGCDA, DANNet
and CDAda, while DeepLabV2 [4] is the common base-
line model of AdaptSeg, BDL and ADVENT. ResNet-101
[14] is chosen as the backbone of the two baseline models,
which allows us to make a comparison directly.

CDAda achieves a 0.7% gain of the overall mIoU over
the best score obtained by all existing methods (by DAN-
Net). In particular, we do not require an additional network
like DANNet. Compared with MGCDA which adopts the
same self-training method, CDAda obtains a significant in-
crease of 2.5% in performance. The respective improve-
ment is apparent in large-scale classes which usually appear
dark in the nighttime, such as road, sidewalk. This indi-
cates our method efficiently reduces the domain divergence
between daytime and nighttime. Meanwhile, CDAda also
gains better performance on some small-scale classes such
as pole, bicycle. This indicates that our method can transfer
enough semantic knowledge about small-scale classes from
daytime to nighttime. To better illustrate the superiority of
our method, we show some visual examples in Fig. 5.

Comparison on Nighttime Driving and BDD100K-
Night In order to reinforce the generality of our approach,
we repeat the above comparison on Nighttime Driving and
BDD100K-Night. The respective results are reported in Ta-
ble 2. Indeed, our method is still by far the best-performing
adaptation approach on Nighttime Driving. It is worth men-



Table 1: Comparison with the state-of-the-art approaches and daytime baseline models on the Dark Zurich-test set.
Notation: the best results are blackened and the second best results are underlined.
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mIoU(%)
RefineNet 68.8 23.2 46.8 20.8 12.6 29.8 30.4 26.9 43.1 14.3 0.3 36.9 49.7 63.6 6.8 0.2 24.0 33.6 9.3 28.5

DeepLabV2 79.0 21.8 53.0 13.3 11.2 22.5 20.2 22.1 43.5 10.4 18.0 37.4 33.8 64.1 6.4 0.0 52.3 30.4 7.4 28.8
AdaptSegNet 86.1 44.2 55.1 22.2 4.8 21.1 5.6 16.7 37.2 8.4 1.2 35.9 26.7 68.2 45.1 0.0 50.1 33.9 15.6 30.4

ADVENT 85.8 37.9 55.5 27.7 14.5 23.1 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7
BDL 85.3 41.1 61.9 32.7 17.4 20.6 11.4 21.3 29.4 8.9 1.1 37.4 22.1 63.2 28.2 0.0 47.7 39.4 15.7 30.8

DMAda 75.5 29.1 48.6 21.3 14.3 34.3 36.8 29.9 49.4 13.8 0.4 43.3 50.2 69.4 18.4 0.0 27.6 34.9 11.9 32.1
GCMA 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0

MGCDA 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5
DANNet(RefineNet) 90.0 54.0 74.8 41.0 21.1 25.0 26.8 30.2 72.0 26.2 84.0 47.0 33.9 68.2 19.0 0.3 66.4 38.3 23.6 44.3

CDAda 90.5 60.6 67.9 37.0 19.3 42.9 36.4 35.3 66.9 24.4 79.8 45.4 42.9 70.8 51.7 0.0 29.7 27.7 26.2 45.0

(a) Image (b) Ground Truth (c) RefineNet (d) AdaptSegNet (e) DANNet (f) CDAda

Figure 5: Visual results of different approaches on Dark Zurich-val set.

Table 2: Comparison with the state-of-the-art ap-
proaches and daytime baseline models on the Night-
time Driving set (mIoU1) and the BDD100K-night set
(mIoU2).

Method mIoU1 (%) mIoU2 (%)
RefineNet 31.5 26.6

DeepLabV2 32.6 22.9
AdaptSegNet-Cityscapes→ DZ-night 34.5 22.0

ADVENT-Cityscapes→ DZ-night 34.7 22.6
BDL-Cityscapes→ DZ-night 34.7 22.8

DMAda 36.1 28.3
GCMA 45.6 33.2

MGCDA 49.4 34.9
DANNet(RefineNet) 42.4 28.2

CDAda 50.9 33.8

tioning that BDD100K-night dataset is not labeled as elab-
orately as Dark Zurich-test set and contains some noise
though they are selected humanly. In particular these noise
mainly reflects in the categories which CDAda performs
better than MGCDA, such as sky, vegetation. Even with
these issues, our CDAda achieves the second best perfor-
mance in BDD100K-night (MGCDA achieves the best per-

Table 3: Ablation study on several model variants of
our method on Dark Zurich-val set. Notation: CBST
means the class balanced self training method in [46]. Ex-
posure Aware means adding the corresponding exposure-
aware weight on the entropy loss. Prediction Guidance de-
notes the addition of prediction-guidance loss.

Components mIoU Gain
initial Daytime-trained baseline: RefineNet 18.2

Step One

CycleGAN FDA Our FDA mIoU Gain
X 22.8 +4.6

X 23.7 +5.5
X 24.6 +6.4

Step Two

The baseline of self-training: CBST 30.6 +12.4
From Easy

to Hard
Exposure

Aware
Prediction
Guidance mIoU Gain

X 33.0 +14.8
X X 33.4 +15.2
X X X 36.0 +17.8

formance). CDAda improves 19.4% and 7.2% upon Re-
fineNet on Nighttime Driving and BDD100K-night respec-
tively which are a very margin. Though our method has
achieved huge improvement on BDD100K, the whole train-
ing does not use any data from BDD100K.



4.4. Ablation Study

Effect of Each Step We measure the active effect of
each step and prove the effectiveness of different compo-
nents through comparing the performance of model vari-
ants on the Dark Zurich-val. First, the addition of the
synthetic nighttime domain is undoubtedly helpful for the
model adaptation. Benefiting from the introduction of no
artifacts, FDA [40] brings an additional 0.9% improve-
ment over CycleGAN [44] which is commonly used in
other works [31, 24, 26, 29]. Because of favorable spa-
tial prior, we extend the original idea [40] to further swap
the low-frequency phase and realize the better style trans-
formation which improves the performance from 23.7% to
24.6%. Second, class balanced self training [46] on the
model (step one) improves the performance from 24.6%
to 30.6%. Moreover from easy to hard self-training fur-
ther minimize the intra-domain gap and reduce the intro-
duction of noise from hard split data. This gets the apparent
2.4% improvement in performance. Adopting the exposure-
aware entropy loss instead of direct entropy loss (no em-
phasis on the over-exposed or under-exposed areas) further
brings in 0.4% gain. We also see that specially designed
prediction-guidance loss further gains 2.6% improvement
on the segmentation accuracy through utilizing the spatial
similarity of the paired daytime and nighttime images. In
general, the full designs of our CDAda bring in an addi-
tional 17.8% performance increase than the initial daytime-
trained baseline.

(a) (b) (c)

Figure 6: (a): Performance with the different degree of style
conversion β. (b): Performance with the different λp. (c):
Performance with the different λe

Sensitivity to the hyper-parameters We investigate the
sensitivity of our method to the hyper-parameters β, λp, λe
and show the results in Fig. 6. From Fig. 6a, it can be seen
that in IDSA with the increase of β, the mIoU firstly in-
creases then decreases, illustrating a bell shape curve. The
mIoU decreases when β is above a certain threshold, in-
dicating that excessive style shift will harm the adaptation
and it is necessary to control the appropriate degree of style
shift. With style shift, the optimal mIoU achieved is 2.1%
higher than that trained without style shift. As illustrated
in Fig. 6b, prediction-guidance loss provides consistent im-
provement within a wide range of λp. From Fig. 6c, we
observe that our method is also robust to λe within a wide

range. Therefore we set β = 0.01, λp = 1 and λe = 0.0025
for all the experiments.

Intra-domain Adaptation from Easy Split to Hard
Split Data Here we discuss that different treatments on
the easy split and hard split data can reduce the distribu-
tion divergence in the nighttime domain itself. Through
pseudo supervision on the easy split data, the model learn
more domain-specific knowledge about nighttime, which
improves the segmentation performance on the hard split
data. As shown in Fig.7, the segmentation performance
on the hard split data has been improved a lot from the
first round to the second round through comparing the cor-
responding prediction results. This reflects the semantic
knowledge has been transferred from easy split part to hard
split part in the nighttime itself. Therefore the intra-domain
gap will be gradually reduced in the self-training.

(a) Image (b) Pred (round 1) (c) Pred (round 2)

Figure 7: Visual comparison between the prediction re-
sult of one hard split image at the first round and the
second round.

5. Conclusion
We have introduced a two-step curriculum domain adap-

tation method for nighttime semantic segmentation. IDSA
utilizes labeled synthetic nighttime images to reduce inter-
domain gap and provides good initialization for IDGST.
IDGST realizes the from-easy-to-hard intra-domain adapta-
tion through class-balanced pseudo supervision on the easy
split data and exposure-aware entropy loss on the hard split
data. We prove that different treatments on the easy split
and hard split data can promote the semantic knowledge
transfer between them. In particular, based on the spa-
tial prior of coarsely aligned day-night image pair, the new
proposed frequency-based style transformation method and
prediction-guidance loss further promote the model adapta-
tion. Compared with other state-of-the-art model adaptation
approaches, our CDAda needs no additional training net-
work or training data. Extensive and detailed evaluations
with standard IoU on real nighttime sets demonstrate the
superiority of our method, which substantially performs fa-
vorably against other state-of-the-art methods.
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