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Abstract

In autonomous driving, the robust and accurate percep-
tions of the environment is a fundamental and challenging
task. Resorting to the advancing of different sensors such
as LiDAR and Camera, the autonomous systems are able to
capture and process complementary perceptual information
for better detection and classifying objects. In this paper, we
propose a LiDAR-Camera fusion method for multi-class 3D
object detection. The proposed method makes the utmost
use of data from the two sensors by multiple fusion stages,
and can be learned in an end-to-end manner. First, we ap-
ply a multi-level gated adaptive fusion mechanism with the
feature extraction backbone. This point-wise fusion stage
assiduously exploits the image and point cloud inputs, and
obtains joint semantic representations of the scene. Next,
given the regions of interest (RoIs) proposed based on the
LiDAR features, the corresponding Camera features are se-
lected by RoI-based feature pooling. These features are
used to enrich the LiDAR features in local regions and en-
hance the proposal refinement. Moreover, we introduce a
multi-label classification task as an auxiliary regulariza-
tion to the object detection network. Without relying on ex-
tra labels, it helps the model better mine the extracted fea-
tures and discover hard object instances. The experiments
conducted on the KITTI dataset have proved all our fusion
strategies are effective.

*Work done primarily while Zejie Wang was an intern at Didi AI Labs,
Didi Chuxing.

1. Introduction

The 3D object detection tasks [2, 29, 24, 11, 17, 20,
21, 23, 27] create both an opportunity and a challenge for
the intelligent transportation industry as a whole. Demands
for multi-class 3D object detection are increasing in com-
plex traffic situations, particularly in large, metropolitan ar-
eas. As the foundational components, LiDAR and Camera
are two most common sensory inputs in autonomous driv-
ing. LiDAR points provide 3D structure information, but
suffer from uneven and sparse points distribution. Espe-
cially small distant objects are hardly to be recognized by
a LiDAR-only model due to extremely low density points.
Cameras can capture images with rich semantic features
while inevitably lack depth information. The demonstration
is shown in Figure 1. To fully utilize the advantage of each
sensor modality, LiDAR points and image features are com-
bined to enhance detection accuracy. However, many exist-
ing works [2, 12, 11, 20, 5] tend to focus on fusing vehi-
cle mixture perceptual information rather than other classes,
such as pedestrian and cyclist. Other fusion works [24, 21]
requires additional complex networks for a priori reasoning.
To fill this gap, we propose an end-to-end learnable archi-
tecture for fusing Camera and LiDAR sensors in a feature-
wise manner for multi-class 3D object detection.

The structure of the fusion model can be divided into
multi-view projection fusion [2, 12, 11, 20] and feature
mapping fusion [24, 21, 23]. In the multi-perspective pro-
jection fusion method, most of the works adopt via perspec-
tive projection and voxelization to quantify point cloud to
pseudo-image by using BEV (birds-eye-view) map. The
BEV format typically comes up with a CNN detection head
to predict bounding box, which can be processed by the ex-
isting mature convolutional neural network. Unfortunately,
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Figure 1. The problems faced by LiDAR-based multi-class 3D de-
tection. The sparse 3D structure captured by LiDAR cannot ef-
fectively express the object. The small goals of ‘Pedestrian’ and
‘Cyclist’ are very sparse, such as the red areas. For relatively dis-
tant target points, it is almost missing, such as the blue area.

the BEV format progressively breaks down the spatial fea-
tures and inevitably downscales resolution, and the con-
version process is inefficient. As a result, the detection
head fails to regress localization precisely due to insuffi-
cient point cloud features.

The feature map fusion method is usually recommended
to employ an image segmentation auxiliary network [1, 16,
30] to extract semantic information before fusing with Li-
DAR features to ensure the effective spatial structure of the
point cloud. The image segmentation auxiliary network is
off-the-shelf and not learnable. Specifically, it is separately
pre-trained and only performs inference in the fusion net-
work’s training phase, which is efficient. [21] has shown
that the precision of the whole fusion network mainly relies
on the performance of the segmentation auxiliary network.
Meanwhile, the recognition situation of the auxiliary seg-
mentation network and the point cloud detection network
is split, and mutual optimization cannot be realized. More-
over, obtaining segmentation mask annotations is less cost-
effective than bounding box labeling in terms of human re-
sources. It is rarely possible to apply for access to open
source dataset for both image segmentation and LiDAR ob-
ject annotations at same frames.

To address these challenges, we propose a novel end-
to-end LiDAR-Camera fusion method, multistage fusion
for multi-class 3D object detection (MSF-MC). We design
a classification-aware auxiliary model which can generate
image features for multi-label prediction to guide LiDAR
backbone to learn more discriminative features. Unlike
popular LiDAR-Camera fusion network [21, 23], instead

of image segmentation annotations, the object classifica-
tion labels are sufficient to provide multi-label supervision.
Importantly, we apply VGG Network as the segmentation
backbone to emphasize that the performance of image back-
bone is not critical for the LiDAR stream prediction ac-
curacy. The fusion model leverages the attention mech-
anism to adaptively inject high-dimensional semantic im-
age features into the LiDAR encoder in point-wise manner
through a lightweight gated network module. As a result,
the LiDAR encoder-decoder module could maintain the
point cloud structural feature losslessly and efficiently and
receive supplemental image semantic information. We fur-
ther add image global semantic information to point cloud
ROIs (regions of interest) to amplify the refinement of the
proposal regression. In order to achieve the correlation be-
tween LiDAR predicted objects and corresponding image
object classification, we adopt classification-based regular-
ization mechanisms to efficiently assist point cloud detector
to recognize small objects.

In summary, our key contributions are as follows:
1. This is a novel work for multi-class LiDAR-Camera

fusion that can be used for end-to-end training, which does
not require additional segmentation annotations.

2. We propose a multi-level gated fusion method to re-
tain the original point cloud structure information, while
provide feature supplement in the ROI.

3. We develop a prediction consistency regularization
mechanism to align the feature gap between LiDAR detec-
tion and image classification.

4. We conducted extensive experiments on the authori-
tative dataset KITTI, which proved the effectiveness of our
proposed method.

2. Related Work
LiDAR-based 3D object detection Like the development
of image object detection, there are two categories in Li-
DAR object detection, one stage approach and two stage ap-
proach. A typical one stage model consists of a point feature
extraction module and a detection module. Point feature ex-
traction module generally produces bird eye’s view or vox-
elization grids. The joint detection head is either 2D or 3D
CNN to learn the features for 3D box prediction. Complex-
yolo [19] projected point cloud to BEV format and used
2D detector. PointPillars [10] encoded point cloud with 6
statistical quantities and stacked voxel features as ‘pillar’.
VoxelNet [29] exploited the PointNet as the backbone to
extract features for each voxel. While Yang et al. [26] ap-
plied a 3D CNN to a grouped voxel grid. Though one stage
approach efficiently saves computing resources, as a trans-
formed compact presentation, voxelization inevitably lose
original spatial information and result in relatively low pre-
cision.

The two-stage approach lifts a 3D region of interests in



Figure 2. The structure of the proposed multistage fusion for multi-class 3D object detection model(MSF-MC). The proposed model uses
PointRCNN as the 3D object detection network, and the VGG-16 structure as the backbone network for image feature extraction to achieve
3-stage fusion. The point-wise semantic information fusion structure is used to realize the point-wise fusion of multi-level image depth
semantic information and point cloud features. The object region fusion structure is used to achieve the feature fusion of the object region.
At the same time, the consistency regularization structure realizes the multi-label prediction results to implement the point cloud prediction
consistency regularization mechanism.

stage one and re�ne the regression in stage two. Part-a2

net [18] generated ROIs from voxel-based feature extrac-
tion layer and adopted intra-object part-aware analysis to
enrich ROI features. Votenet [13] utilized PointNet++ [15]
as the backbone and introduced the Hough voting principle
to group deep features. Yanget al.[28] used PointNet++
[15] as well to keep spatial information and divided ROIs
into voxel grid to �t regular CNN. Generally, the two-stage
approach utilizes PointNet++[15] as the backbone, espe-
cially SA layers and FP layers, to generate proposal for the
re�nement module. It achieves better accuracy by learning
more �ne-grained features from the proposal.

Multi-sensor 3D object detection In the past years,
there has been a rapid rise in the use of multi-sensors. Some
works [14, 22] proposed to produce ROIs from image and
applied the PointNet backbone to extract corresponding Li-
DAR features. One obvious limitation was 3D frustum view
was extruded from 2D region, the image backbone dom-
inated the performance of 3D detection. Chenet al. [2]
gathered image, front view point cloud and bird view point
cloud as the threefold input branches to generate 3D pro-
posal. The variant research [9] proposed image features in
the proposal generation stage. These works had a cumber-
some structure that involved different backbones for each

view though the optimization were end-to-end.
There is a trend that researchers are paying more atten-

tion on image semantic information in fusion work rather
than relying on image detection. Huanget al. [5] merged
point cloud features with image semantic features in a point-
wise way. Xieet al. [23] proposed an attention fusion mod-
ule to solely merge 3D proposals and image segmentation
masks. Voraet al. [21] applied a semantic segmentation
network obtaining pixel-wise image segmentation scores, to
decorate point cloud for �ne-grained semantic understand-
ing. The above works inspire us to take advantages of global
semantic features from images.

3. Method

In this section, we propose a multi-stage fusion model
for multi-class 3D object detection (MSF-MC) that can
be used for end-to-end training. We obtain two differ-
ent sensory inputs from LiDAR and Camera. Given the�

x [i ]; b[i ]; c[i ]
	 n

i =1
donate the LiDAR data set containingn

frames, wherex [i ] presents the point cloud ati -th frame,b[i ]

andc[i ] are the bounding box location and object classi�ca-
tion relatively. Meanwhile, the calibrated Camera dataset�

z[i ]; c[i ]
	 n

i =1
can be obtained, wherez[i ] represents image

data corresponding tox [i ]. Because thez[i ] are synchro-
nized withx [i ], it is possible to usec[i ] for supervised learn-



ing of the image content without introducing additional an-
notations. For the convenience of the following presenta-
tion, we usex andz to represent the currenti -th point cloud
and image respectively. We aim to thoroughly use two dif-
ferent sensory inputs to gain the understanding of comple-
mentary features, and make the 3D object detection more
precise.

The principle of MSF-MC utilizes the gated adaptive
network to accomplish the effective fusion of multi-level
image semantic information and point cloud features. To
additionally re�ne the ROIs local feature, image global se-
mantic information is concatenated with ROI module in the
LiDAR stream. we also adopt multi-task training strategy
to perform the consistency regularization of cross-modality
object class prediction. As mentioned in the related work,
we select a widely used point-based 3D object detector,
PointRCNN, as the detection model in the LiDAR stream.
In terms of image stream, to simplify the training and
to emphasize the effectiveness of our fusion method, the
lightweight VGG-16 model is exploited as the backbone for
multi-label learning and semantic feature acquisition. Un-
like previous work [23, 21], the ef�ciency of image back-
bone won't dominate our fusion performance. Its structure
is shown in Figure 2.

3.1. Point­wise Semantic Information Fusion

In multi-class object detection scenarios, it is crucial
that the learned image and point cloud features include
effective local regions. So we propose to employ point-
wise regional self-attention fusion principle in the �rst stage
to realize sensitivity to effective regions. We exploit the
mapping strategy to leverage the correspondence relation-
ship between LiDAR points and image pixels in a feature
wise manner. LiDAR detection branch consists of four
set abstraction (SA) layers as the feature encoding module.
Given the point cloudx, we gain the point cloud feature
set

�
Sl

	
(l 2 [1; 2; 3; 4]) from these set abstraction layers.

Concurrently we obtain the deep semantic features
�

F l
	

(l 2 [2; 3; 4; 5]) for the the last four layers of the VGG back-
bone. In order to establish the mapping correspondence of
Sl ! F l +1 , wherel 2 [1; 2; 3; 4].

In the same way as in [6, 5], we leverage bilinear in-
terpolation and calibration matrix M to project 3D point
to corresponding image feature where we can sample 2D
feature map and accordingly obtain the feature set

�
V l

	

(l = 2 ; 3; 4; 5), an example of which is shown in Figure 3.
Speci�cally, for a speci�c pointe in a given point cloud
space, according to the mapping matrix and bilinear inter-
polation method, we can obtain its corresponding position
ê in the feature map output by the Camera image branch.
Therefore, we can further obtain point-wise featureV l by
sampling the size area of the image featureF l . The num-
ber of points inV l +1 is exactly the same as the number

Figure 3. Project 3D point to corresponding image feature. Using
the mapping matrixM , the point cloud is projected into the im-
age, and the image features are sampled at the corresponding pixel
positions.

of points in Sl . With this strategy, the original space of
the point cloud can be preserved and depth semantic in-
formation can be introduced at the same time. As a con-
sequence, we could apply multi-level fusion on

�
Sl

	
and�

V l
	

, which is proved more effective in the following ex-
periment section.

On account of illumination, occlusion and truncation,
discrepant representation might occur during cross modal
perception fusion [6, 5]. Inspired by [4, 7], we pro-
pose a gated adaptive fusion mechanism which is able to
evaluate the relevance of point cloud feature and image
feature accordingly. Detailed demonstration is shown in
Figure 4. Speci�cally, by concatenating point-wise im-
age featureV l +1 and point cloud featureSl , we get a
compressed feature vectorSV l , and obtain weighted fea-
ture map fromW = � (MLP (SV l ), where MLP de-
notes shared weighted feature extraction network and� is
sigmoid activation function. To balance the complemen-
tary feature, we design two boosting attention equations
Sl

w = Sl � W andV l +1
w = V l +1 � (1 � W ), where�

presents element wise production. We further merge above
two weighted feature to update LiDAR featureSl :

Sl = Sl
w � V l +1

w (1)

where� stands for merge operation. Self-attention feature
fusion learning is expected to enhance the relevance ofSl

and F l +1 , in order to achieve effective fusion in original
spatial structure.

3.2. Local Region Fusion

In the previous section we were mainly concerned with
point-wise fusion of corresponding features in the same
space. Since the global semantic information of the im-
age can directly and effectively express the scene, we sug-
gest that in the second stage, the target area feature of
ROI-Pooling extracted by theRCNN module in PointR-
CNN should be fused with the global depth semantic in-



Figure 4. Gated adaptive fusion network. The point-wise features
obtained from two different sensors are fused using relevant atten-
tion features to update the point cloud features.

formation of the image to enhance target information and
achieve more precise regression prediction. In the image
feature extraction stage,z can obtain the featureF 5 2
RH � W � C through the last layer of the feature extrac-
tor to generate the global depth semantic feature vector
f = MaxPooling (F 5) 2 R1� C . Similarly, in the cur-
rent point cloudx, the ROI-Pooling region featuresR =
f r 1; r 2; : : : ; r t g can be obtained, wheret represents the
number of features obtained. At this time, there is no con-
�ict between the global semantic information and the char-
acteristics of the target area, so we suggest that the global
semantic information of the image can be directly supple-
mented with the object region information:

R� = f MLP (r i � f )gt
i =0 (2)

where� represents a cascading operation on two features.
We use the fused object region featuresR� as the input of
the �nal re�ned regression task for training update.

3.3. Multi­Label Prediction Auxiliary Regulariza­
tion

In this section, we introduce the multi-label training
method and the accomplishment of the consistency regu-
larization on the third stage.

Multi-label learning To make the image feature extrac-
tor learn �ne-coarse semantic information, we sendz to
it and obtainF 5 as the input of multi-label classi�cation.
The multi-label classi�er is composed ofK separate bi-
nary classi�cation sub-module,C1; C2; : : : ; Ck , to predict
K different classes. Each sub-module is made up of3 � 3
kernel, 512 channel convolution layer and asigmoid activa-
tion function. The labelsc of imagez could be converted to
yc 2 Rk � 1 via a �xed [0; 1] encoding transformation. Then
the multi-label classi�er can be learned by minimizing the

cross-entropy loss:

L ml
i = ycT log(pm ) + (1 � yc)T log(1 � pm ) (3)

The output prediction vectorpm 2 R1� k consists ofk
object classi�cation possibilities. Through multi-label clas-
si�cation loss training, we expect to be able to achieve ef-
fective extraction of image features and obtain predictions
containing objects.

Cross-modal multi-objective category regularization
In the RPN module of PointRCNN, we can obtain the
N point-wise features of the current point cloudx. These
features use the classi�er to obtain the corresponding cat-
egorical variables to construct the segmentation part of the
background before and after for precise adjustment. The
prediction probability matrixQ 2 RN � K of K categories
can be obtained on theN point cloud features. Further,
we can get the multi-category prediction probability vec-
tor qm = Max (Q) 2 R1� K of the current point cloud
x, whereMax is max operation, which takesN � K ma-
trix as the input and return the vector of each column's max
value. We adopt the distribution-wise asymmetric measure
- KL divergence (D kl ) to accomplish the prediction consis-
tency between two different sensor modalities. We prospect
the usage of KL divergence to make prediction robust and
avoid incorrect prediction. In order to maintain the consis-
tency between the prediction generated by the 3D detector
and the prediction generated by the image multi-label target
recognition, we suggest to useSof tmax function to nor-
malize the vectorpm andqm . The loss function of cross
modal regularization is de�ned as following:

L kl
i = D kl (pm jjqm ) + D kl (qm jjpm ) (4)

3.4. Overall Learning

We introduce three-stage fusion method to promote the
performance of 3D object detection. We group 3D object
detection lossL 3d

i , image multi-label classi�cation loss
L ml

i and cross-modal consistency regularization lossL kl
i

to achieve multi-task training. The total loss function on all
data is interpreted as:

L all =
nX

i =0

(L 3d
i + �L ml

i + �L kl
i ) (5)

Among them, � and � are trade-off parameters for
weighing different loss conditions. We use Adaptive Mo-
ment Estimation (Adam) [8] optimization algorithm for
training.

4. Experiments

We evaluated our proposed fusion method (MSF-MC) on
the KITTI 3D object detection dataset [3]. In the following,


