
Multi-weather city: Adverse weather stacking for autonomous driving

Valentina Mus, at* Ivan Fursa† Paul Newman* Fabio Cuzzolin‡ Andrew Bradley†

valentina@robots.ox.ac.uk,17076662@brookes.ac.uk,pnewman@robots.ox.ac.uk,fabio.cuzzolin@brookes.ac.uk,abradley@brookes.ac.uk

Abstract

Autonomous vehicles make use of sensors to perceive
the world around them, with heavy reliance on vision-
based sensors such as RGB cameras. Unfortunately, since
these sensors are affected by adverse weather, perception
pipelines require extensive training on visual data under
harsh conditions in order to improve the robustness of
downstream tasks - data that is difficult and expensive to
acquire. Based on GAN and CycleGAN architectures, we
propose an overall (modular) architecture for construct-
ing datasets, which allows one to add, swap out and com-
bine components in order to generate images with diverse
weather conditions. Starting from a single dataset with
ground-truth, we generate 7 versions of the same data in
diverse weather, and propose an extension to augment the
generated conditions, thus resulting in a total of 14 adverse
weather conditions, requiring a single ground truth. We
test the quality of the generated conditions both in terms of
perceptual quality and suitability for training downstream
tasks, using real world, out-of-distribution adverse weather
extracted from various datasets. We show improvements in
both object detection and instance segmentation across all
conditions, in many cases exceeding 10 percentage points
increase in AP, and provide the materials and instructions
needed to re-construct the multi-weather dataset, based
upon the original Cityscapes dataset.

1. Introduction
Autonomous vehicles rely on a set of sensory informa-

tion in order to correctly perceive the environment and en-
sure a safe journey. Unfortunately, adverse weather and
lighting conditions can affect how the environment is per-
ceived, thus impacting the performance of downstream
tasks and, ultimately, the safety of the traffic participants.
Cameras, which are one of the most cost-effective modal-
ities in autonomous vehicles, are also among the most af-
fected by adverse weather and illumination conditions [52],
with matters made worse by the overlap with some of the
causes of LIDAR performance degradation [17].
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Figure 1: Concept of weather stacking: generated weather appearance,
starting from real overcast.

Due to the increase in popularity of the autonomous driv-
ing industry, a lot of effort has been devoted to tackling
these issues. While hardware solutions are being developed
using the latest technology in order to ensure more robust-
ness to adverse weather at the data acquisition stage [5], a
large body of research focuses on improving the robustness
of downstream tasks via domain adaptation, de-noising, de-
weathering and sensor fusion, amongst others.

Unfortunately, both the aforementioned methods and
the relevant AV-related tasks (such as semantic segmenta-
tion, object detection and depth estimation) require large
training datasets, both in general and in each of the spe-
cific weather conditions the vehicle might encounter. Data
availability, however, has become a serious bottleneck due
to the cost, time and difficulty of obtaining it. To over-
come this issue, significant work has recently been directed
at the synthetic generation of weather conditions [13, 38]
and the photo-realistic style-transfer of weather appearance
[34, 33, 32, 2, 42]. For the purpose of testing downstream
tasks in the wild, datasets have been designed to include
scenes with diverse weather and the corresponding ground
truth [45, 21]. Others have attempted to provide both clear
weather and weather condition pairs for both static [10] and
dynamic scenes [33, 35].

While these approaches are commonly benchmarked in
isolation, rather than in combination, here we aim to show
that combining these techniques can yield much more visu-



ally diverse outputs in a controlled and stackable way. In
this work, in particular, we generate augmented imagery
under 7 distinct various weather and illumination settings
starting from a single dataset with ground truth (Cityscapes
[8]), and test if the generated data is a good proxy for real
weather. We do this by using the generated data as train-
ing data in the context of autonomous driving-related down-
stream tasks. As an extension, we propose as future work
7 other conditions based on the work of [38], and further
present visual results.

The contributions of the paper are as follows:

1. We generate a number of weather conditions using a
unified generator architecture for image translation, for
both paired and unpaired settings, based on the work of
[30] and [54], which results in imagery that not only is
of increased realism and has fewer

2. We use the above-generated weather appearance as in-
put to an additional network designed to add adherent
droplets, thus resulting in a combination of more di-
verse weather appearances, again starting from only a
single dataset with paired ground truth.

3. For a more extensive evaluation, we use multiple
publicly available datasets comprising real adverse
weather for validating the suitability of the data for in-
stance segmentation and object detection, while also
evaluating the quality of the images using the Incep-
tion Score and Fréchet Inception Distance.

4. We release the relevant materials and steps
needed to recreate and use the multi-weather
Cityscapes dataset, which can be found at
https://github.com/vnmusat/multi-weather-city.
Due to licensing restrictions, the dataset itself is
distributed as a set of additive transformations that can
be applied to the original Cityscapes dataset [8].

We would like to stress the facts that the purpose of this
study is not to present an entirely novel image-to-image
translation architecture, but to demonstrate a methodology
for creating diverse data by starting from a single dataset
with paired ground truth, using cascaded image translation
models.

2. Related work
Adverse weather can affect the performance of computer

vision tasks in multiple ways: temperature and tempera-
ture variations affect the optical, electronic and mechani-
cal components used in capturing visual data, while ambi-
ent conditions affect light propagation and the appearance
of the environment [7]. For example, cold temperatures
or foggy conditions can result in condensation on the lens,
blurring the view; raindrops on the windshield can act as
a double lens or generate glares; static snow on roads may

cover the lane markings, affecting detection of driveable ar-
eas, while wet road surfaces might result in reflections and
artefacts due to water puddles, and deteriorated contrast be-
tween road features. As the success of autonomous vehicles
depends on the ability to overcome the effects of these con-
ditions, some studies have developed hardware solutions to
tackle these problems. For example, [5] studies the per-
formance of gated cameras, while [4] extends the study to
combine stereo, gated and thermal cameras with Radar and
LiDAR scanners, showing significant improvements for car
detection at various levels of fog, rain and snow. Other stud-
ies use domain adaptation to ‘change’ the weather condi-
tions as a post data-acquisition process. For example, [29]
explores the effect of generated night-time and generated
day-time rain images on road segmentation and traffic ob-
ject detection, whereas [34] shows an improvement in lo-
calisation by using generated night-time imagery and [33]
develops a de-raining model to improve semantic segmen-
tation.

2.1. Real adverse weather capture

Among the first to provide a dataset with clear and
weather-affected image pairs were the authors of [10], who
used a transparent pane to add dirt and droplets to real-
world scenery. Unfortunately, the dataset focuses only on
static scenes. In the same category fall the works of [46],
which uses 4 cameras attached to a vehicle to capture pairs
of clear and images affected by soil; [33], which uses a
stereo camera behind a bi-partite chamber with one clear
lens and one lens affected by adherent droplets; and finally,
[35] which uses a similar setup to [10], but captures outdoor
images in an indoor environment.

A related but different category is represented by efforts
to collect and annotate data in a series of target conditions
such as: night-time, rainy night, heavy snow and other vari-
ations, such as [39, 28, 45, 31, 21, 44]. Whist these pro-
vide some of the most extensive datasets so far, the data is
limited to specific road conditions in specific areas of the
world, and the data collection process is heavily influenced
by weather forecast. To facilitate the development of a truly
weather-proof system using real data would require the col-
lection of training imagery in all conditions, in all usage ar-
eas and at all times - which is a time-consuming and expen-
sive undertaking. To overcome this difficulty, efforts have
been made to provide a cost-effective and more scalable al-
ternative, such as augmented visual data that is based upon
physics models, synthesis or appearance style transfer.

2.2. Synthetic adverse weather generation

Physics-based approaches are often employed in gener-
ating synthetic weather, especially for fog and droplets. For
example, [36] proposes a pipeline that uses a stereo pair
and depth information to add synthetic fog on clear images,



while [13] creates a purely synthetic fog dataset based on
Synscapes [49] (synthetic fog to synthetic images). Simi-
larly, [14] uses a physics simulator to add rain streaks and
fog on clear images and further tests object detection and se-
mantic segmentation on real rainy imagery, while [33] uses
a physics-based pipeline to add synthetic adherent raindrops
to clear images, and further tests a lane-marking segmenta-
tion model.

Furthermore, [1] uses a computer graphics engine to ren-
der photo-realistic in-focus and defocused raindrops, and
[22] develops a model for restoring images affected by
heavy rain. Neither, however, tests the viability of restored
images as training data, focusing instead on reconstruction
metrics. On the other hand, [23] develops a decomposition
network to split rain-affected images into a clean image and
a rain layer and further trains the model on synthetic gener-
ated rain, but only tests it on 20 real-world images.

2.3. Weather appearance transfer

Due to the recent developments in GAN [12] and Cy-
cleGAN architectures [54], an increasing body of research
has been devoted to applying these models for autonomous
driving tasks. In the case of unpaired data, the first to use
appearance transfer were the authors of [34], who trained
a model to generate images with snow and diverse illumi-
nation in order to optimise feature matching for localisa-
tion. Later research includes that of [2], which generates
day-time images from night-time images in order to im-
prove retrieval-based localisation and [53], which learns to
de-haze synthetic hazy images. The authors of [24] gener-
ate night-time images from day-time images, whereas [47]
generates the soiled counterpart of a clear image and [11]
adds synthetic fog to clear images. Similarly, [29] generates
night-time images from day-time images and shows quali-
tative results on a day-time image with adherent droplets,
while [9] is among the few papers that test semantic seg-
mentation under rainy night conditions, with the drawback
that their model requires paired data. While the aforemen-
tioned works provide multiple weather appearance pairs,
they do not combine or stack conditions, and provision of a
dataset is outside the scope of their work.

Other approaches involve direct image synthesis using
paired data, with prominent examples being [20] and [48]
which synthesize images from semantic or instance maps.
These models, however, assume that a semantic segmen-
tation ground truth exist in order to ensure higher-quality
image generation. Later extensions that aim to improve re-
alism include AdaIN [19] and SPADE [30], which propose
improved normalization techniques to encourage the inter-
mediate convolutional layers to make a better use of the in-
put data. We describe how our work derives from existing
methods in the following section.

3. Methodology
Our overall weather stacking methodology (Fig. 2) con-

sists of two stages. In the first stage, a set of N models re-
ceives as input real overcast imagery, and outputs the same
data but in N different weather styles. In the second stage,
a single model receives the generated weather images and
adds adherent raindrops.

Figure 2: Overall methodology for weather stacking. First, an image
translation CycleGAN model (trained using unpaired data) is used to cre-
ate N weather and illumination conditions from a reference real condi-
tion. Then, a second image translation GAN model (trained using paired
data) is used to apply adherent droplets to the N conditions. The current
setup is one example of such a model stack, with both models being freely
electable.

3.1. Datasets

We chose Cityscapes [8] as our source dataset, on which
we transfer weather appearance (snowy, rainy/wet, night-
time), using Oxford RobotCar [26] as a source of style for
rainy/wet and snowy and the train set of Dark Zurich [39]
for night-time appearances.

Cityscapes was chosen as it is a widely used dataset for
training downstream tasks, with high-quality instance anno-
tations and additional sources of ground-truth such as dis-
parity. Additionally, many of the methods adapted in this
work have been either trained or tested on Cityscapes or its
derivatives. The choice for a source dataset is however open
and free and should be consistent with the target applica-
tions. Since RainyScreens [35] contains imagery captured
through a transparent pane with added droplets, it makes a
good source of paired data for training a droplet generation
model. Finally, to evaluate the night and night+droplets
generated data, we extract diverse real images with adverse
weather from Mapillary [27], BDD100K [51], DAWN [21]
and ACDC [37] to cover the conditions of interest.
3.2. Models

Generative Adversarial Networks [12] are a class of gen-
erative models where a generator and a discriminator com-
pete against each other: the generator G learns to gener-
ate data from a particular distribution pdata(x), whereas the
discriminator D learns to detect which data comes from the
same distribution. The learning setting can thus be formu-
lated as a minimax game, where each of the models tries to



minimise its own losses:

min
G

max
D

L(D,G) = Ex∼pdata(x)[logD(x)]

+ Ey∼py(y)[log(1−D(G(y)))]. (1)

The generator seeks to minimise its own loss by generating
images with high fidelity. Thus, its loss will be minimal
when the discriminator is fooled, i.e., D(G(y)) = 1. On
the other hand, the loss of the discriminator will be minimal
when it is able to correctly identify real images (D(x) = 1)
from generated images (D(G(y)) = 0).

Cycle-consistency GANs are an extension of GAN mod-
els, developed in order to allow image translation between
unpaired datasets. Training a CycleGAN involves optimiz-
ing simultaneously two generators and two discriminators,
where one generator learns the mapping function from a do-
main A to a domain B, while the other learns the mapping
from domain B to domain A. Since the supervision of the
two discriminators is not enough to ensure transfer, an ad-
ditional reconstruction loss is used in order to enforce cy-
cle consistency, by forcing the two generators to reconstruct
each other’s output back into the original domain.

We use N CycleGANs (N = 3 in our case) to
train image translation from (real, overcast, daytime) →
(fake, night), (real, overcast, daytime) → (fake, wet)
and (real, overcast, daytime) → (fake, snow), using the
official architecture [54] but with a SPADE-based generator,
as it was shown to generate images with higher fidelity due
to improved normalization layers [30].

For the paired image translation task (in this case,
applying adherent droplets to the generated conditions)
we use a pix2pix-like architecture [20, 48], again with
a SPADE-based generator [30]. As we have pairs of
clear and droplet-affected images of the Cityscapes dataset
(from the Rainyscreen dataset [35]), we employ one single
GAN to learn the (real, overcast, daytime) → (fake-
droplet, overcast, daytime) mapping, and at inference
time we run it on the N conditions generated as previously
explained.

3.3. Evaluation
3.3.1 Perceptual quality evaluation
Following image quality assessment methods as used in
[30] and [41], we evaluate the perceptual quality of the
generated styles using Fréchet Inception Distance (FID)
[18], but also Inception Score (IS) [40], both based on the
Inception-v3 network [43], and shown to be in line with
human judgements [6]. Whereas IS is computed by tak-
ing into account the predicted class probabilities of gener-
ated images via [43], the FID score analyses the last pool-
ing layer (prior to classification) and models the activations
of real and generated images as two multi-variate Gaussian
distributions, calculating the distance between the two dis-
tributions using the Fréchet distance. An image with high

Dataset O D W WD S SD N ND
BDD100K 100 37 70 68 63 12 46 14
Mapillary 65 - 99 9 385 - 20 -
DAWN - - - 200 - 204 - -
ACDC - - 400 - 400 - 400 -

Table 1: Number of images used in out-of-sample testing of Mask-RCNN

diversity and high quality would have a high IS, whereas an
image with a low FID would correlate with high quality.

3.3.2 Quantitative evaluation

The suitability of the generated images as training data for
relevant downstream tasks is extensively tested on various
real weather conditions, in terms of (i) object detection, (ii)
semantic segmentation and (iii) instance segmentation per-
formance. Due to the large number of condition-and-dataset
combinations, we chose to use and fine-tune Mask-RCNN
[15], as it performs all tasks from the same backbone, while
training relatively efficiently. We would like to stress that
our goal is not to produce state-of-the-art results, but instead
to assess the suitability of our generated training data while
keeping all other variables constant. Any other recent or
state-of-the-art model could be a substitute for MaskRCNN,
yielding potentially better results overall. Table 1 contains
a summary of the datasets, weather conditions and number
of images extracted and used for testing.

In order to evaluate the suitability of each generated con-
dition, we start with a Mask-RCNN model pre-trained on
Cityscapes real overcast images, which is then further fine-
tuned for each generated condition (7 different instances
of the same initial pre-trained model). After fine-tuning
each model, we test it out-of-sample and out-of-distribution
on the real conditions extracted previously, and note the
changes in results. Finally, to test the performance in the
case of a monolithic model instead of individual models,
we fine-tune one model on all the generated conditions at
once, and test again out-of-sample on all real conditions.

The image-translation models were trained on images
that have been resized to 512×1024 and randomly cropped
to 512 × 512. In this way we enforce a uniform standard
across all analyses and ensure that the ground truth is pro-
cessed to reflect the changes.

We use the Detectron2 [50] implementation of Mask-
RCNN with a ResNet+FPN backbone [16, 25]), which out-
puts both predicted masks and bounding boxes. We start
with the official pre-trained model on ImageNet, COCO and
Cityscapes for instance segmentation and bounding box de-
tection.

We report our results in terms of mean Average Precision
(AP), AP@50 and AP@751, for Object detection, Semantic
segmentation and Instance segmentation, depending on the
ground truth availability of the test dataset.

1AP at IoU=.50/IoU=.75, where only candidates with an area at least
50%/70% compared to GT area are considered.



4. Results
4.1. Qualitative results

Using the IS and FID metrics described in section 3.3.1,
the results are reported in Table 2. The Inception Score
is provided as a means for performing a rough comparison
with other approaches, but needs to be used carefully when
comparing models, as outlined in [3]. On the other hand
the FID score may be used to check the degree of alignment
(how similar the conditions or their distributions might be)
between datasets or conditions, and in our case has a sur-
prising amount of correlation with the Quantitative results
reported in Table 3, under ”Improvement on individual fine-
tuned models”. Cityscapes’ synthetic conditions that have a
comparatively lower (better) FID score with respect to BDD
(such as wet, snow and night) also perform much better on
their corresponding BDD conditions, with the ranking pre-
dicted by the FID score being a good indicator of object de-
tection and instance segmentation performance across vari-
ous conditions.
Dataset IS FID
Real overcast (O) 3.75 69.74
Fake droplets on real overcast (D) 4.04 124.66
Fake wet (W) 4.13 87.10
Fake droplets on fake wet (WD) 3.21 182.24
Fake snow (S) 4.12 116.40
Fake droplets on fake snow (SD) 3.72 227.00
Fake night (N) 3.27 86.56
Fake droplets on fake night (ND) 3.45 152.48

Table 2: Qualitative results for Inception Score and Fréchet Inception Dis-
tance. FID is computed wrt. the selected BDD100K train set.

4.2. Quantitative results

We split our quantitative analysis into four parts: testing
against the BDD, Mapillary, DAWN and ACDC datasets,
respectively. We would like to point out that all our testing,
except for the initial baseline, is done on out-of-distribution
data in order to strengthen the validity of the results and to
act as a better proxy for real world performance.

4.2.1 BDD
Table 3 shows our results on various conditions extracted
from the BDD dataset. We begin by benchmarking the per-
formance of the model fine-tuned on half-resolution, center-
cropped Cityscapes overcast images against the Cityscapes
validation set, in order to establish a baseline (1st row).

First, we note that the performance is slightly lower that
the official baseline in [50] due to the use of half-resolution
images. We then assess the loss of performance due to do-
main shift by testing the same model on BDD real overcast
imagery. We note that the drop in performance is less pro-
nounced for Object detection as compared to Instance seg-
mentation, but still significant. After establishing these two
overcast baselines, we then assess the performance of the
model (fine-tuned on overcast images) on the 7 representa-
tive conditions extracted from BDD, establishing our condi-
tion baselines. We notice particularly low performance for

real droplets on real night and unusually high performance
for real droplets on real snow. This is potentially due to the
low number of samples used for these two conditions (see
Table 1), and should be assessed with care.

We then test models trained on the 7 individual synthetic
Cityscapes conditions on their respective BDD conditions.
On first analysis, the mixed results (potentially discount-
ing the two aforementioned conditions with low number of
samples) might be surprising, with fake night and fake wet
showing large increases, fake snow and fake droplets on fake
wet remaining largely the same, and fake droplets on real
overcast showing much lower performance. However, the
FID scores in Table 2 may contain an indication for this
behavior: we notice that fake night and fake wet have rela-
tively good (low) FID scores, appearing to be aligned with
their respective BDD conditions, while the other 5 condi-
tions seem much more unaligned with their respective BDD
conditions.

We analyze this claim in the next block of rows, where
we show results for testing a model trained on all the
Cityscapes conditions against the individual BDD condi-
tions. Because the model now has to learn to generalise
across a much wider set of distributions of conditions in-
stead of only one potentially misaligned distribution, we
would expect to see significant gains against both the re-
sults on individual models and against the baselines. And
indeed, we observe gains across all conditions, with large
improvements (discounting the two conditions with reduced
samples) for fake droplets on real overcast, fake night, fake
snow, fake wet and fake droplets on fake wet. Additionally,
we test this model on the Cityscapes overcast validation set
and show that it outperforms the original baseline, by up to
3.3 percentage points.

4.2.2 Mapillary, DAWN and ACDC
To make up for the reduced number of samples for cer-
tain conditions in BDD, we also test on conditions extracted
from the Mappillary dataset, with results presented in Table
4. We follow the same procedure as for BDD, establishing
baselines, observing mixed results for individual models,
and finally obtaining significant increases for all conditions
when using the model trained on all synthetic Cityscapes
conditions (for example an almost 11 percentage points in-
crease in AP@50 when testing on snow). The DAWN [21]
dataset contains examples of harsh weather conditions, and
specifically covers real droplets with snow (which was un-
derrepresented in BDD) and real droplets with wet. Our
results are reported in Table 5. Again, we begin by es-
tablishing baselines for the model trained on overcast data.
We then obtain mixed results for the individually trained
models, with fake droplets on fake wet improving consid-
erably. Finally, we show significant improvements on both
conditions when using the model trained on all synthetic



(a) real overcast (b) fake snow (c) fake rain/wet (d) fake night

(e) fake droplets (real overcast) (f) fake droplets (fake snow) (g) fake droplets (fake rain/wet) (h) fake droplets (fake night)

Figure 3: Generated conditions

(a) drop(real) (b) fog(wet(real)) (c) fog(snow(real)) (d) fog(night(real))

(e) fog(drop(real)) (f) fog(drop(wet(real))) (g) fog(drop(snow(real))) (h) fog(drop(night(real)))

Figure 4: Extension: fog applied on generated conditions, with a fog coefficient of 0.01

Cityscapes conditions, with fake droplets on fake wet gain-
ing more than 10 percentage points over the real overcast
baseline, and fake droplets on fake snow more than 6 per-
centage points.

The ACDC dataset [37] contains examples of night,
snow and wet conditions with semantic segmentation

ground truth. We report results in Table 6. Similarly to pre-
vious experiments, we observe mixed results for individual
models and an increase in performance across the board for
the monolithic model, reinforcing the trend observed in pre-
vious experiments.



Description Fine-tune set
Cityscapes

Test condition Object detection Instance segmentation
AP AP@50 AP@75 AP AP@50 AP@75

Domain shift to
BDD

Real O train City real O val 31.83 52.73 30.77 27.14 48.15 24.95
Real O train BDD O 29.22 51.92 25.28 20.99 37.52 19.32

Weather
baselines

Real O train BDD D 26.00 47.82 16.06 19.57 43.12 7.49
Real O train BDD N 20.60 29.90 23.67 15.11 27.69 21.50
Real O train BDD ND 7.75 19.12 3.61 4.02 14.74 1.23
Real O train BDD S 24.95 40.40 27.08 20.50 34.37 19.48
Real O train BDD SD 39.38 57.60 51.67 37.40 52.02 45.98
Real O train BDD W 22.09 39.99 20.95 16.58 34.54 15.55
Real O train BDD WD 17.57 37.65 17.04 13.76 32.10 10.99

Results on
individual
fine-tuned
models

Synth D train BDD D 21.03 35.92 22.97 15.86 32.51 8.88
Synth N train BDD N 26.45 36.48 25.82 22.03 33.56 22.70
Synth ND train BDD ND 16.86 34.21 9.48 8.35 22.41 3.07
Synth S train BDD S 25.07 42.62 26.46 17.33 27.35 19.40
Synth SD train BDD SD 8.77 15.68 9.66 4.44 8.05 3.58
Synth W train BDD W 25.12 43.30 25.35 18.73 37.13 17.52
Synth WD train BDD WD 17.10 35.64 15.91 15.22 30.26 9.13

Results on
all-weathers
fine-tuned
models

Synth all train BDD D 31.46 52.71 42.89 21.43 48.13 13.01
Synth all train BDD N 26.73 46.08 32.75 25.43 42.48 24.09
Synth all train BDD ND 26.27 45.32 26.78 13.66 38.36 4.63
Synth all train BDD S 36.59 62.38 33.28 28.29 56.72 28.50
Synth all train BDD SD 36.33 49.62 44.47 29.88 43.65 36.40
Synth all train BDD W 35.13 58.62 35.14 28.94 52.37 27.45
Synth all train BDD WD 23.98 49.39 23.56 24.88 42.54 30.06

Re-test Synth all train City real O val 35.18 56.42 35.37 25.68 44.63 24.66

Table 3: Object detection and instance segmentation results on BDD conditions

Description Fine-tune set
Cityscapes

Test condition Object detection Instance segmentation
AP AP@50 AP@75 AP AP@50 AP@75

Domain shift to
Mapillary

Real O train City real O val 31.83 52.73 30.77 27.14 48.15 24.95
Real O train Mapillary O 24.02 38.44 25.48 20.20 35.49 19.05

Weather baselines
Real O train Mapillary N 10.40 19.08 11.07 7.85 19.34 6.52
Real O train Mapillary S 11.12 18.18 11.17 10.51 16.91 11.14
Real O train Mapillary W 17.67 29.03 17.64 15.06 29.11 13.07
Real O train Mapillary WD 12.90 17.94 14.37 13.90 27.13 13.98

Results on individual
fine tuned models

Synth N train Mapillary N 8.44 17.34 6.55 6.15 11.66 5.74
Synth S train Mapillary S 7.75 12.27 8.59 7.04 11.51 7.09
Synth W train Mapillary W 16.09 27.78 15.54 15.10 26.24 15.04
Synth WD train Mapillary WD 13.16 19.96 12.95 15.18 29.53 16.89

Results on
all-weathers fine
tuned models

Synth all train Mapillary N 11.14 19.94 9.11 9.80 16.62 10.25
Synth all train Mapillary S 13.69 23.22 13.28 13.22 21.10 14.40
Synth all train Mapillary W 18.22 30.89 18.69 16.80 32.41 12.73
Synth all train Mapillary WD 16.52 25.60 15.04 17.12 23.73 18.64

Table 4: Object detection and instance segmentation results on Mapillary conditions

Description Fine-tune set
Cityscapes

Test condi-
tion

AP AP
@50

AP
@75

Weather
baselines

Real O train set DAWN SD 9.27 25.19 6.84
Real O train set DAWN WD 10.39 18.24 11.11

Results on
individual
fine tuned
models

Synth SD train
set

DAWN SD 8.13 16.04 7.74

Synth WD train
set

DAWN WD 14.49 24.96 15.76

Results on
all-weathers
fine tuned
models

Synth all train
set

DAWN SD 16.55 37.21 14.46

Synth all train
set

DAWN WD 21.20 39.19 21.62

Table 5: Object detection results on DAWN conditions

5. Conclusions and proposed work
In this work we propose a modular architecture aimed

to unlock diverse and stackable weather conditions with the
purpose of weather appearance synthesis for improving per-
ception downstream tasks. We generate 7 different weather
styles starting from a single dataset with ground truth and
show significant improvements in AP in both object detec-

Description Fine-tune set
Cityscapes

Test con-
dition

AP AP
@50

AP
@75

Weather
baselines

Real O train set ACDC N 1.63 4.68 1.12
Real O train set ACDC S 9.29 20.96 6.31
Real O train set ACDC W 10.60 21.74 8.04

Results on
individual fine
tuned models

Synth N train set ACDC N 3.03 8.24 1.81
Synth S train set ACDC S 5.95 14.15 4.32
Synth W train set ACDC W 9.76 20.16 7.22

Results on
all-weathers fine
tuned models

Synth all train set ACDC N 3.95 10.51 2.10
Synth all train set ACDC S 12.07 27.09 9.41
Synth all train set ACDC W 11.69 25.48 8.10

Table 6: Semantic segmentation results on ACDC conditions

tion and instance segmentation, in many cases exceeding
10 percentage points increase in AP. Due to the difficulty of
finding aligned real-world conditions with existing ground
truth from available datasets, we also train a monolithic
model and show significant improvements not only over the
weather baselines, but also over the original real overcast
Cityscapes baseline. Finally, we publish instructions to re-
construct the dataset. As future work, we propose an ex-



(a) Percentage points improvements in AP for Object detection, evaluated on BDD
weather conditions

(b) Percentage points improvements in AP for Instance segmentation, evaluated on
BDD weather conditions

(c) Percentage points improvements in AP for Object detection, evaluated on Mapil-
lary weather conditions

(d) Percentage points improvements in AP for Instance segmentation, evaluated on
Mapillary weather conditions

Figure 5: Due to misalignment between the train conditions and test conditions, models trained on individual conditions only may exhibit loss of perfor-
mance (Blue). However, training the model on all weathers leads to large improvements in performance across all conditions, compared to the baseline
model trained on the original Cityscapes overcast imagery.

(a) Percentage points improvements in AP for Semantic segmentation, evaluated on
ACDC weather conditions

(b) Percentage points improvements in AP for Object detection, evaluated on DAWN
weather conditions

Figure 6: Reinforcing the trend observed in previous experiments, we observe that models trained with all conditions perform significantly better than either
the baselines or models trained with individual conditions.

tension to our current overall methodology based on Foggy
Cityscapes [38], which applies synthetic fog on real images
with good weather conditions. Since their fog pipeline is
based on stereo pairs from Cityscapes, we are able to use
the authors’ provided demo in order to add synthetic fog to
our generated weathers. While quantitative analysis of the
extended foggy conditions is out of the scope of this paper,
we present visual results in Fig.4.
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