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Abstract

This work investigates the validity of an occupancy grid
mapping inspired by human cognition and the way hu-
mans visually perceive the environment. This query is mo-
tivated by the fact that, to date, no autonomous driving sys-
tem reaches the performance of an ordinary human driver.
The mechanisms behind human perception could provide
cues on how to improve common techniques employed in
autonomous navigation—specifically the use of occupancy
grids to represent the environment. We experiment with a
neural network that maps an image of the scene onto an oc-
cupancy grid representation, and we show how the model
benefits from two key (and yet simple) changes: 1) a dif-
ferent format of occupancy grid that resembles the way the
brain projects the environment into a warped representa-
tion in the cortical visual area; 2) a mechanism similar
to human visual attention that filters out non-relevant in-
formation from the scene. These effective expedients can
potentially be applied to any autonomous driving task re-
quiring an abstract representation of the scenario like the
occupancy grids.

1. Introduction

One of the classical cornerstones of artificial intelligence is
to draw inspiration from human cognition to design simi-
lar intelligent behaviors in artificial systems [2, 15]. This
tenet finds fertile ground in the field of intelligent vehicles
because humans still outperform any state-of-the-art au-
tonomous driving system. While an average human driver
is expected to cause a minor accident every 10 million
miles [1], the best autonomous vehicle manufacturers re-
port an average of one disengagement every 30,000 miles
[27]. Moreover, the major human causes of traffic acci-
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Figure 1. We propose two cognitively plausible changes to im-
prove occupancy grid mapping: a transformation function map-
ping the vehicles from the visual scene into an occupancy grid that
is warped in a way resembling the visual cortex (top); a technique
simulating cognitive visual attention to select important informa-
tion and mask non-relevant components from a cluttered scene
(bottom).

dents are cognitive impairments such as the influence of al-
cohol or drugs, tiredness, distraction, and recklessness [37].
An expert driver in normal conditions is rarely the cause
of an accident. The human ability of driving is especially
remarkable, given that vehicles are technological artifacts
controlled by interfaces that are extraneous to the natural
human motion control. Nonetheless, humans learn to drive
quickly and robustly.

We argue that the superior human driving capability sug-
gests that the solution to achieving self-driving cars lies in
the human brain itself. The cognitive mechanisms underly-
ing the driving skill could reveal precious insights on how to
design better driving agents and improve the existing tech-
niques commonly employed in autonomous navigation. It
is important to note, however, that vehicles are not biolog-
ical bodies, and the hardware is not the brain. This is why
most approaches to autonomous driving bear little resem-
blance to the cognitive processes involved during driving. It
is undeniable that some of these engineering practices—like



modular decomposition—can provide highly desirable fea-
tures, like reducing the complexity of single sub-modules or
decoupling possible sources of failure [17]. Similarly, there
are algorithms far different from brain computations that are
very effective on silicon processors. Hence, it is crucial to
find a compromise between well-consolidated technologies
and inspiration from human neurocognition.

This work investigates the integration of cognitive plau-
sibility in the task of occupancy grid mapping, i.e., generat-
ing from a visual scene a representation of the vehicle’s sur-
rounding environment. We apply cues derived from known
brain mechanisms to improve the format of occupancy rep-
resentation and to simplify the visual information coming
from the environment. Our contributions are the following:

1. We modify the occupancy mapping function such that
the occupancy grid is not uniformly spaced anymore,
but warped in a way that mimics human cortical mag-
nification [18], which is the space warping applied by
the primary cortical visual area to enlarge the central
part of the scene with respect to the peripheral parts;

2. Instead of considering the entire visual scene, we sup-
press the parts of the image that do not contain cru-
cial elements (vehicles); in this way, we simulate the
human visual attention mechanisms [10, 20, 26, 35],
which deal with cluttered visual scenes by selecting
important information and by filtering out non-relevant
information.

Note that the cognitive mechanism of visual attention con-
sidered here is very different from the popular notion of at-
tention in deep learning—we will clarify this aspect in Sec-
tion 2.2.

This work provides an example of how key neurocogni-
tive principles can be translated into simple expedients to be
integrated into existing autonomous navigation approaches,
obtaining valid improvements without much computational
effort. Here we show the case of occupancy grid map-
ping, but the idea of cognitive plausibility has been success-
fully investigated also in other autonomous driving tasks
[6, 30–32].

The rest of the paper is organized as follows. Section 2
summarizes the existing methods of occupancy grid map-
ping, and it illustrates the different accounts of attention
mechanism in the literature. Section 3 describes our two
contributions: a formulation of occupancy grids that concil-
iates between mathematical efficiency and cognitive plausi-
bility; a mechanism that emulates the beneficial effects of
visual attention in perception of driving scenarios. The sec-
tion also illustrates the model implementation. Section 4
presents the dataset, the evaluation metrics, and the results
on different combinations of input and output formats along
with a comparison with the related works. Lastly is Sec-
tion 5 which presents the conclusions.

2. Related Works
2.1. Occupancy Grid Mapping

One of the most established formats of abstract represen-
tation of driving environments is the occupancy grids, first
proposed in the field of robotic perception and navigation
[12]. An occupancy grid G is a uniformly spaced 2D lattice
of binary elements gi,j each representing the presence of an
obstacle at the corresponding patch Ai,j of the continuous
world space:

gi,j =

{
1 if ∃ ok |

(
X(k),Z(k)

)
∈ Ai,j

0 otherwise
, (1)

where ok is an object with center
(
X(k),Y (k),Z(k)

)
lo-

cated in the environment (considering the Z-axis pointing
to the travel direction of the ego car, the X-axis pointing to
the right of the ego vehicle, and the Y -axis perpendicular to
the ground plane pointing upwards). The patch Ai,j is the
area on the ground plane defined by a neighborhood of the
point (Xi,Zj) of width [∆X,∆Z].

An occupancy grid can be also interpreted as a binary
image. Assuming the origin of the coordinate system of the
image space in the top-left corner and the bottom-right cor-
ner having coordinates (W − 1,H − 1), the transformation
of a world point (Xi,Zj) into image coordinates (i, j) is
the following:

i =
W

2
+

Xi

∆X
, (2)

j = H − Zj − Z̃

∆Z
, (3)

where the parameter Z̃ represents the longitudinal length of
the “blind zone” of the ego camera, i.e., the area immedi-
ately in front of the ego vehicle which lies outside the field
of view of the camera. Since the information about the ob-
stacles ok is the result of measurements affected by uncer-
tainty, the values of gi,j are usually probabilities rather than
simple binary values.

Probabilistic occupancy grids have become popular also
outside the domain of robotics. They are frequently adopted
in high-level modules of autonomous driving systems—a
recent overview of their applications can be found in [25]. A
precious feature of occupancy grids is the predisposition to
be processed by artificial neural networks. Because of their
2D matricial format, they combine effectively with convo-
lutional neural networks. Moreover, the values in a grid cell
can span multiple channels and include additional informa-
tion, such as the semantic of the obstacle or its velocity.

Most of the works on occupancy grid mapping lever-
age range sensors like LIDARs and radars, which provide
the depth information to easily generate a bird-eye’s view



(BEV) of the scene. Some works adopt other visual sen-
sors that include depth information, such as RGB-D cam-
eras [16] and stereo cameras [22], while other works fuse
multiple sensors, e.g. cameras and LIDARs [13, 28].

There are a few works that map occupancy grids directly
from a monocular camera, as in our approach. Lu et al. [23]
use a variational encoder-decoder to produce a top-down
semantic representation of the scene. Their work, however,
focuses on detecting the drivable areas rather than the ve-
hicles, and it puts special emphasis on training the model
with weak ground truth. Mani et al. [24] predict both the
BEV layout of the scene and the vehicles location. They
propose to “hallucinate” plausible completions for occluded
parts by leveraging adversarial feature learning. Roddick
& Cipolla [36] too generate top-down maps capturing both
the road layout and the traffic participants. They learn an
implicit mapping from the image plane to the BEV plane
using the information on the camera geometry. Philion &
Fidler [29] produce BEVs that include vehicles, drivable
areas, and lane boundaries, leveraging multi-view camera
data coming from a full camera rig covering 6 points of
view. Can et al. [5] predict semantic top-down maps with
several dynamic and static classes. They exploit additional
information coming from temporal aggregation and feed the
model sequences of frames as input.

In contrast with these works, our approach leverage ex-
clusively single images of the monocular camera—without
the need of camera geometry information, temporal data, or
multiple cameras—and focuses on mapping the occupancy
of the vehicles, with emphasis on the accuracy of vehicles
that are close to the ego car.

2.2. Attention Mechanisms

The term “attention” has recently become very popular in
the computer vision community, with the rise of the so-
called self-attention vision models. It is important to high-
light that these models have little to do with human vi-
sual attention. As a consequence, our proposed mechanism
imitating natural attention is profoundly different from the
common account of self-attention mechanism in deep learn-
ing.

The deep learning adaptation of “attention” started
within the field of Natural Language Processing [38], with
the aim to capture long-range dependencies. Self-attention
makes it possible to model long-distance interactions in
neural sequence transduction models, even without the need
of recurrent layers [38]. By applying a similar approach to
tasks like image recognition and video classification [39],
self-attention allows vision models to augment—or entirely
replace [33]—the convolution operations and capture long-
range dependencies in visual data.

Natural visual attention is not about spatial or temporal
long-distance interactions. Although the term encompasses

a set of cognitive mechanisms, it mainly refers to the close
relation between saccadic eye movements and covert orient-
ing of visual spatial attention [10, 20, 26, 35]. Saccades are
rapid movements of the eyes that change the point of foveal
fixation. The saccade location proves to be where the atten-
tion of a person is mostly directed; in fact, one cannot move
the eyes to one location and attend to a different one.

The saccadic system has inspired similar mechanisms in
computer vision. For example, De Souza et al. [7] imple-
ment a variant of the retinal log-polar transform for a neural
network to detect traffic signs using a small dataset. Note
that there are also computational models that implement
aspects of natural visual attention accurately [8, 9, 19, 21].
However, the purpose of these models is to help investi-
gate the neurocomputational basis of visual attention, and
they are not aimed at engineering applications requiring ef-
ficiency and high performance.

We propose an attention mechanism that follows the cog-
nitive account of attention. Given that the task at hand is
mapping the location of vehicles in the occupancy grids,
the model needs to direct its “attention” towards the spatial
locations of the vehicles in the input image. We achieve
this by suppressing the visual information not concerning
vehicles.

3. Methodology

This work deals with the task of occupancy grid mapping:
given an image of a traffic scene, predict an occupancy
grid of the surrounding vehicles. To realize this task, we
have implemented a deep convolutional encoder-decoder.
The objective of this work is to show that cognitive prin-
ciples can help design mechanisms to improve prediction
of occupancy grids. We propose two cognitively plausible
mechanisms—the first revising the format of the output, the
second pre-processing the input.

3.1. Cognitively Plausible Occupancy Grids

Two core aspects of occupancy grids go strongly against
cognitive plausibility: the point of view of the image and
the uniform tessellation of the world space. Firstly, an
occupancy grid—as conventionally used in the context of
navigation—corresponds to a BEV or a top-down view of
the world space. This kind of orthographic view is clearly
impossible for a human driver. Secondly, in the human
visual system, the retinal space is never represented uni-
formly. In the primary cortical visual area, the space warp-
ing with respect to the eye view is known as cortical magni-
fication [18]. This warping enlarges the central space of the
scene at the expense of the peripheral areas, and it is typi-
cally described with the polar-log transformation [3, 11].

We propose an occupancy grid representation that better
resembles the human perception system while preserving



original ω = 50 ω = 10 ω = 5 ω = 2 ω = 1
Figure 2. Warped occupancy grids representing a visual scene (leftmost image) using different values of warping.

the undeniable computational advantages of the simple ma-
tricial structure of the grids. By applying a similar warping
to the occupancy grid, we magnify close objects and reduce
the size of distant objects. Just like with cortical magnifi-
cation, in the “warped occupancy grid”, the more relevant
an object is the more it is represented in detail. In the case
of driving, the relevance of an object depends mainly on the
time required by the ego car to reach it: closer objects are
more crucial, and they require more precision. For this rea-
son, we exploit the idea of cortical magnification in the lon-
gitudinal distance only, rather than considering a full polar-
log transformation in all dimensions.

We define the warping transformation as a logarithmic
transformation in the longitudinal dimension (Z-axis) and
as a linear transformation in the lateral dimension (X-axis).
In this way, every element of the warped occupancy grid
corresponds to a square patch of the world space. The lon-
gitudinal warping transformation is the following:

w(Z) = log(Z + ω) − log(ω), (4)

where ω is the constant defining the amount of warping,
with the maximum deformation at ω = 1.0 and no defor-
mation for ω → +∞. Fig. 2 gives an example of how ω
influences the appearance of a warped occupancy grid. The
transformation of a world point into image coordinates in
the warped occupancy grid is the following:

i =
W

2
+

H∆Z

w(H∆Z)
w(Zj)
Zj

Xi

∆X
, (5)

j = H −H
w(Zj) − w(Z̃)

w(H∆Z)
. (6)

This transformation magnifies the objects that are closer to
the ego camera, in contrast with the linear occupancy grid
transformation—eqs. (2) and (3)—in which objects have
constant size in every point of the image space. The warped
occupancy grid appears more similar to what a human per-
ceives while driving, having a comparable perspective and
point of view of the scene, and giving more importance
to the objects in the foreground. At the same time, the
warped occupancy grid still corresponds to conventional co-
ordinates in the real world, and it can be potentially used by
control systems for navigation without any additional step.

Figure 3. Examples of the attention mechanism applied in three
scenarios: on the first row the original images, on the second row
the results of “focusing the attention” on the vehicles.

3.2. Cognitively Plausible Visual Attention

There are many discrepancies between human perception
and artificial perception, especially in the context of driv-
ing. One above all concerns dealing with cluttered visual
scenes. Normally in artificial perception, the system ac-
quires images covering the whole scenario populated by nu-
merous objects, which may be relevant or negligible. Then,
elaborate processes analyze the entire images to attempt to
recognize the relevant objects and locate them in the world
geometry.

In human perception, a set of cognitive operations deals
with complex visual scenes by selecting important infor-
mation and by filtering out irrelevant information. For ex-
ample, a person driving through the countryside does not
need to first classify the kind of fruits hanging from the
trees by the roadside to understand they are not relevant
information—the driver instinctively directs the attention to
the road and the cars ahead. This cognitive process takes the
name of visual attention, and it is one of the most studied
topics in visual science [10, 20, 26, 35].

We propose a mechanism imitating the role of visual at-
tention to reduce the computational complexity of the neu-
ral network. When dealing with traffic scenes, the salient
parts of the scenes are mainly the vehicles. The attention
should be directed to them, rather than to the surround-
ing buildings, foliage, or sky—especially in a task like
occupancy grid mapping. Hence, we simulate the effect
of attention simply by suppressing the areas of the image
where there are no vehicles, before feeding the image to the
model. Fig. 3 shows the result of this preprocessing. We
use YOLO-v3 [34] to detect in the image the 2D bounding
boxes containing vehicles and suppress the pixels outside



these regions.

3.3. Model Architecture

The proposed model is a deep convolutional neural network
with a encoder-decoder architecture. The input of the model
is a single image of 800×450 pixels representing the traffic
scene. The output is a graylevel image of 128×128 pixels
that represents the occupancy grid describing the vehicles
location in the scene. The encoder is composed of a stack of
seven convolutions followed by two fully-connected layers,
ending into a latent space of 256 neurons. The decoder con-
sists of a single fully-connected layer followed by a stack
of five deconvolutions. The loss function used to train the
model is the binary cross-entropy.

We have implemented different versions of the model
varying the formats of input and output. The two formats of
input are the original frame coming from the video stream
of the ego camera (FRM), and the frame processed with the
attention mechanism (ATT). The output formats are the
standard uniformly spaced occupancy grid (OCC), and the
warped occupancy grid (WRP). Moreover, we have tested
two versions of WRP with different coefficients of warping:
WRP1 uses ω = 1, and WRP2 uses ω = 2. Ultimately, there
are six variations of the model corresponding to the possible
combinations of input and output.

4. Results
4.1. Dataset

The dataset adopted in this work is nuScenes [4], devel-
oped by the company Motional (formerly known as nuTon-
omy). The dataset is organized into 1000 video sequences
(of which 850 sequences include LIDAR data and annota-
tions) featuring a considerable variety of environments, il-
luminations, and weather conditions. For a swifter training
and testing process, we reduce the dataset to 200 video se-
quences (∼40,000 frames). The reduced dataset still pre-
serves a good variety of driving scenarios, but it excludes
the sequences in which there are no vehicles for most of the
time. We randomly allocate 140 of the selected sequences
to the training set, 30 to the validation, and 30 to the test set.

To generate the ground truth data for the occupancy
grids, we map the 3D bounding box annotations onto bi-
nary images of 128 × 128 pixels using the two transforma-
tion functions defined in equations (2), (3) for the standard
occupancy grid (OCC) and (5), (6) for the warped occupancy
grid (WRP). We set ∆X = ∆Z = 0.5 m so that every pixel
of the occupancy grid corresponds to a square of 0.25 m2

of the world space, and Z̃ = 3.5 m. Hence, the maximum
distance represented in the occupancy grids (both uniform
and warped) is 67.5 m.

To implement the attention mechanism, we use YOLO
as “out-of-the-box” object detector. We find YOLO does

not need fine-tuning on nuScenes because the predicted 2D
bounding boxes appear consistent with the ground truth of
the dataset.

4.2. Evaluation Metrics

We consider three metrics to evaluate how the cognitive
variations improve the performance of the model. The met-
rics are the intersection over union (IoU), the average preci-
sion (AP), and the distance between centroids in the world
space. The IoU is computed between the entire target and
predicted occupancy grid images. Instead, the AP and the
centroids are computed with respect to the connected re-
gions extracted from the occupancy grids. The matches be-
tween connected regions of target and prediction are deter-
mined using the greedy algorithm adopted from KITTI [14].
We set a binarization threshold of θ = 0.4 and NΘ = 40 re-
call levels for the AP computation.

We are aware that IoU and AP might favor WRP with re-
spect to OCC, because of the different spaces in which the
metrics are computed. That is why we have included the
metric measuring the distance between centroids. This met-
ric is not usually adopted in works on occupancy grid map-
ping, but it is computed in terms of the original coordinates
of the world space, so it provides a fair evaluation in this
context. In fact, the results in Section 4.3 will show similar
trends in all three metrics.

To better assess how the warped occupancy grid im-
proves the prediction of closer vehicles, we also compute
the metrics separately in three different classes of depth in
the world space. The occupancy grids and the related con-
nected regions are partitioned into a close range (CLS) for
depth < 15 m, a far range (FAR) for depth > 30 m, and a
middle range (MID) in between.

4.3. Results

Table 1 shows the results of the proposed model comparing
the six combinations of input and output formats described
in Section 3.3. All model variations share the same archi-
tecture and hyperparameters, and they have been trained for
200 epochs. The results are grouped by evaluation metric,
and each group is in turn divided into the four classes of
depth range described in Section 4.2 (ALL refers to the en-
tire range).

The baseline FRM-OCC maps the image frame into a stan-
dard uniformly spaced occupancy grid. The models FRM-
WRP change the output format as they map the frame into
the warped occupancy grids emulating cortical magnifica-
tion. The model ATT-OCC employs the cognitive mechanism
on the input instead, masking the areas of the image with-
out vehicles. The models ATT-WRP combine both methods.
For the warped occupancy grid, the table reports separate
results for the two warping factors, namely WRP1 and WRP2.

It is possible to identify some patterns that seem to occur



IoU ↑ Average Precision ↑ Distance Centroids ↓
ALL CLS MID FAR ALL CLS MID FAR ALL CLS MID FAR

FRM – OCC 16.4 42.0 26.0 12.2 0.077 0.195 0.103 0.022 1.74 1.41 1.80 2.11
FRM – WRP1 30.3 47.0 30.9 8.7 0.096 0.254 0.085 0.005 1.51 1.24 1.62 5.18
FRM – WRP2 31.3 46.6 33.4 9.1 0.089 0.231 0.096 0.009 1.15 1.04 1.36 4.25
ATT – OCC 20.3 48.5 30.1 14.9 0.113 0.319 0.154 0.034 1.58 1.39 1.61 2.06
ATT – WRP1 32.9 53.9 34.1 13.6 0.142 0.416 0.148 0.021 1.15 0.95 1.39 4.56
ATT – WRP2 34.0 53.7 38.1 15.2 0.144 0.414 0.175 0.027 0.99 0.98 0.97 3.96

Table 1. Comparison of the formats of input and output over the same architecture. The scores are computed on the entire output and on
partitions of the output space based on the distance from the ego car.

Input (FRM) Target (OCC) Output Input (FRM) Target (OCC) Output Input (FRM) Target (OCC) Output

Input (ATT) Target (WRP) Output Input (ATT) Target (WRP) Output Input (ATT) Target (WRP) Output

Figure 4. Visual results on six test samples using the baseline (FRM-OCC) and the model with cognitive plausibility (ATT-WRP2). The
predicted output is displayed with a binarization threshold of 0.4.

consistently. Firstly, the models with input ATT outperform
the models with the corresponding output and input FRM.
This happens consistently in all the metrics. It can be de-
duced that the proposed attention mechanism benefits the
training of the neural network. Secondly, the models that
perform better in the close and middle ranges (CLS and MID)
are the models with ouput WRP. This happens, again, in all
three metrics. The superiority of WRP in the middle/close
range is coherent with the idea that the warping mimics the
effect of cortical magnification and improves the accuracy
of the vehicles in the proximity of the ego car. Moreover,
while the strongest warping factor WRP1 achieves the best
CLS scores, the model with WRP2 performs better in general,
which is indicated by the higher ALL scores in all metrics.
Lastly, the models with WRP manifest a larger gap between
the scores in CLS and FAR, with respect to the model us-
ing OCC as output. This is, once again, consistent with the
fact that the standard occupancy grid is uniformly spaced.
Hence, a car close to the camera (which occupies a large

portion of the image frame) and a very distant car (displayed
in few pixels of the frame) occupy a similar number of grid
elements and are predicted with similar accuracy. Fig. 4
shows visual results on six test samples using the baseline
FRM-OCC (top of figure) and the best model with cognitive
plausibility ATT-WRP2 (bottom).

Table 2 presents a comparison with the other relevant
approaches mapping visual input into occupancy grids re-
viewed in Section 2.1. We have selected the work that have
trained their models on nuScenes. Table 2 reports the IoU
scores provided in the original papers. Although all meth-
ods employ nuScenes, the video sequences in the training
and test sets are not the same in all cases. Moreover, it
should be recalled that we train our models on a reduced
number of nuScenes sequences, as described in Section 4.1.
Hence, this comparison is to be considered in broad terms.

The combination of the two proposed mechanisms (ATT-
WRP2) drastically improve the performance of the baseline
(FRM-OCC). These cognitive-inspired mechanisms are easy



IoU

Lu et al. [23] 8.8
Roddick & Cipolla [36] 24.7

Philion & Fidler [29] 32.1
Can et al. [5] 36.0

Ours (FRM-OCC) 16.4
Ours (ATT-WRP2) 34.0

Table 2. IoU scores (%) on the nuScenes dataset. We report the
scores from the original papers.

to implement and employ a light architecture easy to in-
spect. The related approaches adopt heavier neural net-
works which exploit additional information, like temporal
data [5], multiple cameras [29], and camera geometry [36].
On the other hand, these works do not focus specifically on
the vehicles: they also predict semantic maps of the road
and the drivable areas. Therefore, the results in Table 2
are, once again, an approximate comparison. Nonetheless,
while the baseline (FRM-OCC) obtains limited performance,
the model with cognitive plausibility (ATT-WRP2) is compet-
itive compared to most of the state-of-the-art methods.

5. Conclusions

We have investigated the benefit of integrating cognitive
plausibility into autonomous driving tasks, specifically in
the case of occupancy grid mapping. Our method improves
the baseline approach to occupancy grid mapping by intro-
ducing two cognitively plausible changes. First, we have
simulated the cognitive mechanism of visual attention by
suppressing in the visual input the areas of the image that
do not contain vehicles. Second, we have mimicked human
cortical magnification by warping the occupancy grid in or-
der to magnify close vehicles and improve their accuracy.
The two improvements require minimum implementation
effort compared to other related state-ot-the-art approaches,
obtaining competitive results on the nuScenes dataset. Our
results indicate the value of taking human cognition as a
source of inspiration—an idea that could be explored in dif-
ferent tasks for intelligent vehicles.

There is a fundamental discrepancy between our ap-
proach and the cognitive mechanisms involved during driv-
ing: the lack of dynamic information. Natural vision is in-
herently dynamic. Humans do not perceive static indepen-
dent “frames”; on the contrary, they rely heavily on tem-
poral dynamics of the environment. The current work does
not leverage information about the movements of the ob-
jects. Hence, a promising future development could be a
way to integrate dynamic information in the model to better
support the cognitive inspiration.
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